基于三维中心差可分离残差LSTM坐标注意网络的动态手势识别

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lichuan Geng , Jie Chen , Yun Tie , Lin Qi , Chengwu Liang
{"title":"基于三维中心差可分离残差LSTM坐标注意网络的动态手势识别","authors":"Lichuan Geng ,&nbsp;Jie Chen ,&nbsp;Yun Tie ,&nbsp;Lin Qi ,&nbsp;Chengwu Liang","doi":"10.1016/j.jvcir.2024.104364","DOIUrl":null,"url":null,"abstract":"<div><div>The area of human–computer interaction has generated considerable interest in dynamic gesture recognition. However, the intrinsic qualities of the gestures themselves, including their flexibility and spatial scale, as well as external factors such as lighting and background, have impeded the improvement of recognition accuracy. To address this, we present a novel end-to-end recognition network named 3D Central Difference Separable Residual Long Short-Term Memory (LSTM) Coordinate Attention (3D CRLCA) in this paper. The network is composed of three components: (1) 3D Central Difference Separable Convolution (3D CDSC), (2) a residual module to enhance the network’s capability to distinguish between categories, and (3) an LSTM-Coordinate Attention (LSTM-CA) module to direct the network’s attention to the gesture region and its temporal and spatial characteristics. Our experiments using the ChaLearn Large-scale Gesture Recognition Dataset (IsoGD) and IPN datasets demonstrate the effectiveness of our approach, surpassing other existing methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104364"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic gesture recognition using 3D central difference separable residual LSTM coordinate attention networks\",\"authors\":\"Lichuan Geng ,&nbsp;Jie Chen ,&nbsp;Yun Tie ,&nbsp;Lin Qi ,&nbsp;Chengwu Liang\",\"doi\":\"10.1016/j.jvcir.2024.104364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The area of human–computer interaction has generated considerable interest in dynamic gesture recognition. However, the intrinsic qualities of the gestures themselves, including their flexibility and spatial scale, as well as external factors such as lighting and background, have impeded the improvement of recognition accuracy. To address this, we present a novel end-to-end recognition network named 3D Central Difference Separable Residual Long Short-Term Memory (LSTM) Coordinate Attention (3D CRLCA) in this paper. The network is composed of three components: (1) 3D Central Difference Separable Convolution (3D CDSC), (2) a residual module to enhance the network’s capability to distinguish between categories, and (3) an LSTM-Coordinate Attention (LSTM-CA) module to direct the network’s attention to the gesture region and its temporal and spatial characteristics. Our experiments using the ChaLearn Large-scale Gesture Recognition Dataset (IsoGD) and IPN datasets demonstrate the effectiveness of our approach, surpassing other existing methods.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"107 \",\"pages\":\"Article 104364\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324003201\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人机交互领域对动态手势识别产生了相当大的兴趣。然而,手势本身的内在特性,包括其灵活性和空间尺度,以及外部因素,如照明和背景,阻碍了识别精度的提高。为了解决这一问题,本文提出了一种新的端到端识别网络——三维中心差异可分离残余长短期记忆(LSTM)坐标注意(3D CRLCA)。该网络由三个部分组成:(1)3D中心差分可分离卷积(3D CDSC),(2)残差模块增强网络的类别区分能力,(3)lstm -坐标注意(LSTM-CA)模块将网络的注意力引导到手势区域及其时空特征上。我们使用ChaLearn大规模手势识别数据集(IsoGD)和IPN数据集的实验证明了我们方法的有效性,超越了其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic gesture recognition using 3D central difference separable residual LSTM coordinate attention networks
The area of human–computer interaction has generated considerable interest in dynamic gesture recognition. However, the intrinsic qualities of the gestures themselves, including their flexibility and spatial scale, as well as external factors such as lighting and background, have impeded the improvement of recognition accuracy. To address this, we present a novel end-to-end recognition network named 3D Central Difference Separable Residual Long Short-Term Memory (LSTM) Coordinate Attention (3D CRLCA) in this paper. The network is composed of three components: (1) 3D Central Difference Separable Convolution (3D CDSC), (2) a residual module to enhance the network’s capability to distinguish between categories, and (3) an LSTM-Coordinate Attention (LSTM-CA) module to direct the network’s attention to the gesture region and its temporal and spatial characteristics. Our experiments using the ChaLearn Large-scale Gesture Recognition Dataset (IsoGD) and IPN datasets demonstrate the effectiveness of our approach, surpassing other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信