推进肺结核筛查:一种量身定制的CNN方法,用于准确的胸部x线分析和实际临床整合

K.K. Mujeeb Rahman, Sedra Zulaikha, Banan Dhafer, Rawan Ahmed
{"title":"推进肺结核筛查:一种量身定制的CNN方法,用于准确的胸部x线分析和实际临床整合","authors":"K.K. Mujeeb Rahman,&nbsp;Sedra Zulaikha,&nbsp;Banan Dhafer,&nbsp;Rawan Ahmed","doi":"10.1016/j.ibmed.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><div>Pulmonary tuberculosis (PTB) is a chronic infectious disease claiming approximately 1.5 million lives annually, emphasizing the need for timely diagnosis to improve survival and limit its spread. Chest X-rays are effective for identifying TB-related lung abnormalities, often before symptoms arise, making early detection crucial. Our project enhances PTB screening by leveraging a CNN model trained on 12,848 images from reliable open-access datasets. The system achieves 99.72 % accuracy in binary classification (normal vs. abnormal) and 99.61 % in distinguishing healthy, TB, and non-TB cases, outperforming existing solutions. This ML-driven tool enables swift, cost-effective, and precise PTB detection, ensuring targeted treatment and addressing medicolegal needs through reliable and accountable diagnostics.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100196"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing tuberculosis screening: A tailored CNN approach for accurate chest X-ray analysis and practical clinical integration\",\"authors\":\"K.K. Mujeeb Rahman,&nbsp;Sedra Zulaikha,&nbsp;Banan Dhafer,&nbsp;Rawan Ahmed\",\"doi\":\"10.1016/j.ibmed.2024.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pulmonary tuberculosis (PTB) is a chronic infectious disease claiming approximately 1.5 million lives annually, emphasizing the need for timely diagnosis to improve survival and limit its spread. Chest X-rays are effective for identifying TB-related lung abnormalities, often before symptoms arise, making early detection crucial. Our project enhances PTB screening by leveraging a CNN model trained on 12,848 images from reliable open-access datasets. The system achieves 99.72 % accuracy in binary classification (normal vs. abnormal) and 99.61 % in distinguishing healthy, TB, and non-TB cases, outperforming existing solutions. This ML-driven tool enables swift, cost-effective, and precise PTB detection, ensuring targeted treatment and addressing medicolegal needs through reliable and accountable diagnostics.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺结核(PTB)是一种慢性传染病,每年夺去约150万人的生命,强调需要及时诊断以提高生存率并限制其传播。胸部x光片通常在症状出现之前就能有效识别与结核病相关的肺部异常,因此早期发现至关重要。我们的项目通过利用CNN模型训练来自可靠开放获取数据集的12,848张图像来增强PTB筛查。该系统在二元分类(正常与异常)方面达到99.72%的准确率,在区分健康、结核病和非结核病病例方面达到99.61%的准确率,优于现有的解决方案。这种机器学习驱动的工具能够实现快速、经济高效和精确的肺结核检测,确保有针对性的治疗,并通过可靠和负责任的诊断解决医疗法律需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing tuberculosis screening: A tailored CNN approach for accurate chest X-ray analysis and practical clinical integration
Pulmonary tuberculosis (PTB) is a chronic infectious disease claiming approximately 1.5 million lives annually, emphasizing the need for timely diagnosis to improve survival and limit its spread. Chest X-rays are effective for identifying TB-related lung abnormalities, often before symptoms arise, making early detection crucial. Our project enhances PTB screening by leveraging a CNN model trained on 12,848 images from reliable open-access datasets. The system achieves 99.72 % accuracy in binary classification (normal vs. abnormal) and 99.61 % in distinguishing healthy, TB, and non-TB cases, outperforming existing solutions. This ML-driven tool enables swift, cost-effective, and precise PTB detection, ensuring targeted treatment and addressing medicolegal needs through reliable and accountable diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信