中度主动脉瓣狭窄疾病进展模型的建立和验证

Miguel R. Sotelo , Paul Nona , Loren Wagner , Chris Rogers , Julian Booker , Efstathia Andrikopoulou
{"title":"中度主动脉瓣狭窄疾病进展模型的建立和验证","authors":"Miguel R. Sotelo ,&nbsp;Paul Nona ,&nbsp;Loren Wagner ,&nbsp;Chris Rogers ,&nbsp;Julian Booker ,&nbsp;Efstathia Andrikopoulou","doi":"10.1016/j.ibmed.2025.100201","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Understanding the multifactorial determinants of rapid progression in patients with aortic stenosis (AS) remains limited. We aimed to develop and validate a machine learning model (ML) for predicting rapid progression from moderate to severe AS within one year.</div></div><div><h3>Methods</h3><div>8746 patients were identified with moderate AS across seven healthcare organizations. Three ML models were trained using demographic, and echocardiographic variables, namely Random Forest, XGBoost and causal discovery-logistic regression. An ensemble model was developed integrating the aforementioned three. A total of 3355 patients formed the training and internal validation cohort. External validation was performed on 171 patients from one institution.</div></div><div><h3>Results</h3><div>An ensemble model was selected due to its superior F1 score and precision in internal validation (0.382 and 0.301, respectively). Its performance on the external validation cohort was modest (F1 score = 0.626, precision = 0.532).</div></div><div><h3>Conclusion</h3><div>An ensemble model comprising only demographic and echocardiographic variables was shown to have modest performance in predicting one-year progression from moderate to severe AS. Further validation in larger populations, along with integration of comprehensive clinical data, is crucial for broader applicability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100201"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a moderate aortic stenosis disease progression model\",\"authors\":\"Miguel R. Sotelo ,&nbsp;Paul Nona ,&nbsp;Loren Wagner ,&nbsp;Chris Rogers ,&nbsp;Julian Booker ,&nbsp;Efstathia Andrikopoulou\",\"doi\":\"10.1016/j.ibmed.2025.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Understanding the multifactorial determinants of rapid progression in patients with aortic stenosis (AS) remains limited. We aimed to develop and validate a machine learning model (ML) for predicting rapid progression from moderate to severe AS within one year.</div></div><div><h3>Methods</h3><div>8746 patients were identified with moderate AS across seven healthcare organizations. Three ML models were trained using demographic, and echocardiographic variables, namely Random Forest, XGBoost and causal discovery-logistic regression. An ensemble model was developed integrating the aforementioned three. A total of 3355 patients formed the training and internal validation cohort. External validation was performed on 171 patients from one institution.</div></div><div><h3>Results</h3><div>An ensemble model was selected due to its superior F1 score and precision in internal validation (0.382 and 0.301, respectively). Its performance on the external validation cohort was modest (F1 score = 0.626, precision = 0.532).</div></div><div><h3>Conclusion</h3><div>An ensemble model comprising only demographic and echocardiographic variables was shown to have modest performance in predicting one-year progression from moderate to severe AS. Further validation in larger populations, along with integration of comprehensive clinical data, is crucial for broader applicability.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:对主动脉瓣狭窄(AS)患者快速进展的多因素决定因素的了解仍然有限。我们的目标是开发和验证一种机器学习模型(ML),用于预测一年内从中度到重度AS的快速进展。方法7家医疗机构共8746例中度AS患者。使用人口统计学和超声心动图变量,即随机森林、XGBoost和因果发现-逻辑回归,训练了三个ML模型。开发了一个集成模型,将上述三者集成在一起。共有3355名患者组成了培训和内部验证队列。对来自同一机构的171例患者进行了外部验证。结果集成模型在内部验证中F1得分和精密度均较优(分别为0.382和0.301)。其在外部验证队列中的表现一般(F1评分= 0.626,精密度= 0.532)。结论仅包含人口统计学和超声心动图变量的集成模型在预测中度到重度AS的一年进展方面表现不佳。在更大的人群中进一步验证,以及综合临床数据的整合,对于更广泛的适用性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and validation of a moderate aortic stenosis disease progression model

Background

Understanding the multifactorial determinants of rapid progression in patients with aortic stenosis (AS) remains limited. We aimed to develop and validate a machine learning model (ML) for predicting rapid progression from moderate to severe AS within one year.

Methods

8746 patients were identified with moderate AS across seven healthcare organizations. Three ML models were trained using demographic, and echocardiographic variables, namely Random Forest, XGBoost and causal discovery-logistic regression. An ensemble model was developed integrating the aforementioned three. A total of 3355 patients formed the training and internal validation cohort. External validation was performed on 171 patients from one institution.

Results

An ensemble model was selected due to its superior F1 score and precision in internal validation (0.382 and 0.301, respectively). Its performance on the external validation cohort was modest (F1 score = 0.626, precision = 0.532).

Conclusion

An ensemble model comprising only demographic and echocardiographic variables was shown to have modest performance in predicting one-year progression from moderate to severe AS. Further validation in larger populations, along with integration of comprehensive clinical data, is crucial for broader applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信