通过先进的机器学习框架加强甲状腺疾病预测和合并症管理

P. Sanju , N. Syed Siraj Ahmed , P. Ramachandran , P. Mohamed Sajid , R. Jayanthi
{"title":"通过先进的机器学习框架加强甲状腺疾病预测和合并症管理","authors":"P. Sanju ,&nbsp;N. Syed Siraj Ahmed ,&nbsp;P. Ramachandran ,&nbsp;P. Mohamed Sajid ,&nbsp;R. Jayanthi","doi":"10.1016/j.ceh.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Thyroid disease is one of the most prevalent endocrine disorders worldwide, necessitating precise and efficient diagnostic models for improved clinical outcomes. This study proposes a Hybrid Feature Selection and Deep Learning Framework (HFSDLF) that integrates Random Forests with Principal Component Analysis (PCA) and L1 regularization for effective feature selection and classification. Utilizing the UCI Thyroid Dataset, the framework combines the strengths of deep learning-based feature extraction and traditional machine learning classifiers. The Random Forest classifier achieved the highest accuracy of 96.30 %, outperforming other models such as Decision Trees and Logistic Regression, with notable improvements in sensitivity and specificity. The novelty of this work lies in its hybrid approach to feature selection, which reduces dimensionality while retaining the most informative features, and its application of an optimized Random Forest model for enhanced classification accuracy. Comparative analysis with existing methods further highlights the superiority of the proposed framework in terms of accuracy and processing efficiency. This research addresses key limitations of existing approaches and contributes to the field by demonstrating a scalable and interpretable solution for thyroid disease diagnosis. The proposed framework provides a benchmark for future studies, underscoring the importance of hybrid methodologies in medical data analysis.</div></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"8 ","pages":"Pages 7-16"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing thyroid disease prediction and comorbidity management through advanced machine learning frameworks\",\"authors\":\"P. Sanju ,&nbsp;N. Syed Siraj Ahmed ,&nbsp;P. Ramachandran ,&nbsp;P. Mohamed Sajid ,&nbsp;R. Jayanthi\",\"doi\":\"10.1016/j.ceh.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thyroid disease is one of the most prevalent endocrine disorders worldwide, necessitating precise and efficient diagnostic models for improved clinical outcomes. This study proposes a Hybrid Feature Selection and Deep Learning Framework (HFSDLF) that integrates Random Forests with Principal Component Analysis (PCA) and L1 regularization for effective feature selection and classification. Utilizing the UCI Thyroid Dataset, the framework combines the strengths of deep learning-based feature extraction and traditional machine learning classifiers. The Random Forest classifier achieved the highest accuracy of 96.30 %, outperforming other models such as Decision Trees and Logistic Regression, with notable improvements in sensitivity and specificity. The novelty of this work lies in its hybrid approach to feature selection, which reduces dimensionality while retaining the most informative features, and its application of an optimized Random Forest model for enhanced classification accuracy. Comparative analysis with existing methods further highlights the superiority of the proposed framework in terms of accuracy and processing efficiency. This research addresses key limitations of existing approaches and contributes to the field by demonstrating a scalable and interpretable solution for thyroid disease diagnosis. The proposed framework provides a benchmark for future studies, underscoring the importance of hybrid methodologies in medical data analysis.</div></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"8 \",\"pages\":\"Pages 7-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588914125000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914125000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲状腺疾病是世界上最常见的内分泌疾病之一,需要精确和有效的诊断模型来改善临床结果。本研究提出了一种混合特征选择和深度学习框架(HFSDLF),该框架将随机森林与主成分分析(PCA)和L1正则化相结合,用于有效的特征选择和分类。该框架利用UCI甲状腺数据集,结合了基于深度学习的特征提取和传统机器学习分类器的优势。随机森林分类器达到了96.30%的最高准确率,优于决策树和逻辑回归等其他模型,在灵敏度和特异性方面都有显著提高。这项工作的新颖之处在于其混合的特征选择方法,在保留最具信息量的特征的同时降低了维数,并应用了优化的随机森林模型来提高分类精度。通过与现有方法的对比分析,进一步突出了该框架在精度和处理效率方面的优势。本研究解决了现有方法的关键局限性,并通过展示可扩展和可解释的甲状腺疾病诊断解决方案,为该领域做出了贡献。拟议的框架为今后的研究提供了基准,强调了混合方法在医疗数据分析中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing thyroid disease prediction and comorbidity management through advanced machine learning frameworks
Thyroid disease is one of the most prevalent endocrine disorders worldwide, necessitating precise and efficient diagnostic models for improved clinical outcomes. This study proposes a Hybrid Feature Selection and Deep Learning Framework (HFSDLF) that integrates Random Forests with Principal Component Analysis (PCA) and L1 regularization for effective feature selection and classification. Utilizing the UCI Thyroid Dataset, the framework combines the strengths of deep learning-based feature extraction and traditional machine learning classifiers. The Random Forest classifier achieved the highest accuracy of 96.30 %, outperforming other models such as Decision Trees and Logistic Regression, with notable improvements in sensitivity and specificity. The novelty of this work lies in its hybrid approach to feature selection, which reduces dimensionality while retaining the most informative features, and its application of an optimized Random Forest model for enhanced classification accuracy. Comparative analysis with existing methods further highlights the superiority of the proposed framework in terms of accuracy and processing efficiency. This research addresses key limitations of existing approaches and contributes to the field by demonstrating a scalable and interpretable solution for thyroid disease diagnosis. The proposed framework provides a benchmark for future studies, underscoring the importance of hybrid methodologies in medical data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信