{"title":"环礁卫星图像的语义分割框架:使用UNet变体和分割体育馆的深入探索","authors":"Ray Wang , Tahiya Chowdhury , Alejandra C. Ortiz","doi":"10.1016/j.acags.2024.100217","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a framework for semantic segmentation of satellite imagery aimed at studying atoll morphometrics. Recent advances in deep neural networks for automated segmentation have been valuable across a variety of satellite and aerial imagery applications, such as land cover classification, mineral characterization, and disaster impact assessment. However, identifying an appropriate segmentation approach for geoscience research remains challenging, often relying on trial-and-error experimentation for data preparation, model selection, and validation. Building on prior efforts to create reproducible research pipelines for aerial image segmentation, we propose a systematic framework for custom segmentation model development using Segmentation Gym, a software tool designed for efficient model experimentation. Additionally, we evaluate state-of-the-art U-Net model variants to identify the most accurate and precise model for specific segmentation tasks. Using a dataset of 288 Landsat images of atolls as a case study, we conduct a detailed analysis of various annotation techniques, image types, and training methods, offering a structured framework for practitioners to design and explore segmentation models. Furthermore, we address dataset imbalance, a common challenge in geographical data, and discuss strategies to mitigate its impact on segmentation outcomes. Based on our findings, we provide recommendations for applying this framework to other geoscience research areas to address similar challenges.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100217"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic segmentation framework for atoll satellite imagery: An in-depth exploration using UNet variants and Segmentation Gym\",\"authors\":\"Ray Wang , Tahiya Chowdhury , Alejandra C. Ortiz\",\"doi\":\"10.1016/j.acags.2024.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a framework for semantic segmentation of satellite imagery aimed at studying atoll morphometrics. Recent advances in deep neural networks for automated segmentation have been valuable across a variety of satellite and aerial imagery applications, such as land cover classification, mineral characterization, and disaster impact assessment. However, identifying an appropriate segmentation approach for geoscience research remains challenging, often relying on trial-and-error experimentation for data preparation, model selection, and validation. Building on prior efforts to create reproducible research pipelines for aerial image segmentation, we propose a systematic framework for custom segmentation model development using Segmentation Gym, a software tool designed for efficient model experimentation. Additionally, we evaluate state-of-the-art U-Net model variants to identify the most accurate and precise model for specific segmentation tasks. Using a dataset of 288 Landsat images of atolls as a case study, we conduct a detailed analysis of various annotation techniques, image types, and training methods, offering a structured framework for practitioners to design and explore segmentation models. Furthermore, we address dataset imbalance, a common challenge in geographical data, and discuss strategies to mitigate its impact on segmentation outcomes. Based on our findings, we provide recommendations for applying this framework to other geoscience research areas to address similar challenges.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"25 \",\"pages\":\"Article 100217\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Semantic segmentation framework for atoll satellite imagery: An in-depth exploration using UNet variants and Segmentation Gym
This paper presents a framework for semantic segmentation of satellite imagery aimed at studying atoll morphometrics. Recent advances in deep neural networks for automated segmentation have been valuable across a variety of satellite and aerial imagery applications, such as land cover classification, mineral characterization, and disaster impact assessment. However, identifying an appropriate segmentation approach for geoscience research remains challenging, often relying on trial-and-error experimentation for data preparation, model selection, and validation. Building on prior efforts to create reproducible research pipelines for aerial image segmentation, we propose a systematic framework for custom segmentation model development using Segmentation Gym, a software tool designed for efficient model experimentation. Additionally, we evaluate state-of-the-art U-Net model variants to identify the most accurate and precise model for specific segmentation tasks. Using a dataset of 288 Landsat images of atolls as a case study, we conduct a detailed analysis of various annotation techniques, image types, and training methods, offering a structured framework for practitioners to design and explore segmentation models. Furthermore, we address dataset imbalance, a common challenge in geographical data, and discuss strategies to mitigate its impact on segmentation outcomes. Based on our findings, we provide recommendations for applying this framework to other geoscience research areas to address similar challenges.