{"title":"使用预训练卷积神经网络的自动变异函数推理","authors":"Mokdad Karim , Koushavand Behrang , Boisvert Jeff","doi":"10.1016/j.acags.2025.100219","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach is presented for inferring covariance functions from sparse data using Convolutional Neural Networks (CNNs). Two workflows are proposed: (1) direct prediction of variogram model parameters, and (2) prediction of experimental variogram values at specified lag distances, which are smooth and easily autofit. Workflow 1 achieves an r-squared of 0.80, while Workflow 2 attains a higher r-squared of 0.96. Data augmentation through rotation improves robustness, and can be used to examine variogram uncertainty; the distribution for each predicted parameter can be obtained and used in uncertainty modeling. The CNNs are pre-trained, ensuring minimal computational time and fully automated processing. The workflows are applicable to sparse or dense data but are currently limited to 2D normal score variograms.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100219"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic variogram inference using pre-trained Convolutional Neural Networks\",\"authors\":\"Mokdad Karim , Koushavand Behrang , Boisvert Jeff\",\"doi\":\"10.1016/j.acags.2025.100219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel approach is presented for inferring covariance functions from sparse data using Convolutional Neural Networks (CNNs). Two workflows are proposed: (1) direct prediction of variogram model parameters, and (2) prediction of experimental variogram values at specified lag distances, which are smooth and easily autofit. Workflow 1 achieves an r-squared of 0.80, while Workflow 2 attains a higher r-squared of 0.96. Data augmentation through rotation improves robustness, and can be used to examine variogram uncertainty; the distribution for each predicted parameter can be obtained and used in uncertainty modeling. The CNNs are pre-trained, ensuring minimal computational time and fully automated processing. The workflows are applicable to sparse or dense data but are currently limited to 2D normal score variograms.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"25 \",\"pages\":\"Article 100219\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197425000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automatic variogram inference using pre-trained Convolutional Neural Networks
A novel approach is presented for inferring covariance functions from sparse data using Convolutional Neural Networks (CNNs). Two workflows are proposed: (1) direct prediction of variogram model parameters, and (2) prediction of experimental variogram values at specified lag distances, which are smooth and easily autofit. Workflow 1 achieves an r-squared of 0.80, while Workflow 2 attains a higher r-squared of 0.96. Data augmentation through rotation improves robustness, and can be used to examine variogram uncertainty; the distribution for each predicted parameter can be obtained and used in uncertainty modeling. The CNNs are pre-trained, ensuring minimal computational time and fully automated processing. The workflows are applicable to sparse or dense data but are currently limited to 2D normal score variograms.