动机、对数和拓扑密尔诺振动

IF 1.5 1区 数学 Q1 MATHEMATICS
Jean-Baptiste Campesato , Goulwen Fichou , Adam Parusiński
{"title":"动机、对数和拓扑密尔诺振动","authors":"Jean-Baptiste Campesato ,&nbsp;Goulwen Fichou ,&nbsp;Adam Parusiński","doi":"10.1016/j.aim.2024.110075","DOIUrl":null,"url":null,"abstract":"<div><div>We compare the topological Milnor fibration and the motivic Milnor fibre of a regular complex function with only normal crossing singularities by introducing their common extension: the complete Milnor fibration. We give two equivalent constructions: the first one extending the classical Kato–Nakayama log-space, and the second one, more geometric, based on the real oriented multigraph construction, a version of the real oriented deformation to the normal cone. As an application, we recover A'Campo's model of the topological Milnor fibration, by quotienting the motivic Milnor fibration with suitable powers of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>, and show that it determines the classical motivic Milnor fibre.</div><div>We also give precise formulae expressing how the introduced objects change under blowings-up. As an application, we show that the motivic Milnor fibre is well-defined as an element of a suitable Grothendieck ring without requiring that the Lefschetz motive be invertible.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110075"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motivic, logarithmic, and topological Milnor fibrations\",\"authors\":\"Jean-Baptiste Campesato ,&nbsp;Goulwen Fichou ,&nbsp;Adam Parusiński\",\"doi\":\"10.1016/j.aim.2024.110075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We compare the topological Milnor fibration and the motivic Milnor fibre of a regular complex function with only normal crossing singularities by introducing their common extension: the complete Milnor fibration. We give two equivalent constructions: the first one extending the classical Kato–Nakayama log-space, and the second one, more geometric, based on the real oriented multigraph construction, a version of the real oriented deformation to the normal cone. As an application, we recover A'Campo's model of the topological Milnor fibration, by quotienting the motivic Milnor fibration with suitable powers of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>, and show that it determines the classical motivic Milnor fibre.</div><div>We also give precise formulae expressing how the introduced objects change under blowings-up. As an application, we show that the motivic Milnor fibre is well-defined as an element of a suitable Grothendieck ring without requiring that the Lefschetz motive be invertible.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"461 \",\"pages\":\"Article 110075\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005917\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005917","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过引入它们的共同扩展:完全密尔诺纤维,我们比较了拓扑密尔诺纤维和只有正交交叉奇点的正则复函数的动力密尔诺纤维。我们给出了两个等价的构造:第一个是扩展了经典的Kato-Nakayama对数空间,第二个是基于实取向多图构造的更加几何化的构造,是实取向变形到法锥的一个版本。作为应用,我们恢复了拓扑Milnor纤维的A’campo模型,将动机Milnor纤维以合适的R>;0次方引用,并证明了它决定了经典的动机Milnor纤维。我们也给出了精确的公式来表达引入的对象在爆炸下的变化。作为一个应用,我们证明了动机Milnor纤维可以定义为一个合适的Grothendieck环的元素,而不要求Lefschetz动机是可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motivic, logarithmic, and topological Milnor fibrations
We compare the topological Milnor fibration and the motivic Milnor fibre of a regular complex function with only normal crossing singularities by introducing their common extension: the complete Milnor fibration. We give two equivalent constructions: the first one extending the classical Kato–Nakayama log-space, and the second one, more geometric, based on the real oriented multigraph construction, a version of the real oriented deformation to the normal cone. As an application, we recover A'Campo's model of the topological Milnor fibration, by quotienting the motivic Milnor fibration with suitable powers of R>0, and show that it determines the classical motivic Milnor fibre.
We also give precise formulae expressing how the introduced objects change under blowings-up. As an application, we show that the motivic Milnor fibre is well-defined as an element of a suitable Grothendieck ring without requiring that the Lefschetz motive be invertible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信