涉及分数阶拉普拉斯式的半线性方程中最优Hölder正则性的例子

IF 1.3 2区 数学 Q1 MATHEMATICS
Gyula Csató , Albert Mas
{"title":"涉及分数阶拉普拉斯式的半线性方程中最优Hölder正则性的例子","authors":"Gyula Csató ,&nbsp;Albert Mas","doi":"10.1016/j.na.2025.113755","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the Hölder regularity of solutions to the semilinear equation involving the fractional Laplacian <span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> in one dimension. We put in evidence a new regularity phenomenon which is a combined effect of the nonlocality and the semilinearity of the equation, since it does not happen neither for local semilinear equations, nor for nonlocal linear equations. Namely, for nonlinearities <span><math><mi>f</mi></math></span> in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> and when <span><math><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the solution is not always <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mi>β</mi><mo>−</mo><mi>ϵ</mi></mrow></msup></math></span> for all <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Instead, in general the solution <span><math><mi>u</mi></math></span> is at most <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>β</mi><mo>)</mo></mrow></mrow></msup><mo>.</mo></mrow></math></span></div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113755"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of optimal Hölder regularity in semilinear equations involving the fractional Laplacian\",\"authors\":\"Gyula Csató ,&nbsp;Albert Mas\",\"doi\":\"10.1016/j.na.2025.113755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss the Hölder regularity of solutions to the semilinear equation involving the fractional Laplacian <span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> in one dimension. We put in evidence a new regularity phenomenon which is a combined effect of the nonlocality and the semilinearity of the equation, since it does not happen neither for local semilinear equations, nor for nonlocal linear equations. Namely, for nonlinearities <span><math><mi>f</mi></math></span> in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> and when <span><math><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the solution is not always <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mi>β</mi><mo>−</mo><mi>ϵ</mi></mrow></msup></math></span> for all <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Instead, in general the solution <span><math><mi>u</mi></math></span> is at most <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>β</mi><mo>)</mo></mrow></mrow></msup><mo>.</mo></mrow></math></span></div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"255 \",\"pages\":\"Article 113755\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000100\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000100","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一维分数阶拉普拉斯方程(−Δ)su=f(u)的半线性方程解的Hölder正则性。我们提出了一种新的正则现象,它是方程的非定域性和半线性的综合效应,因为它既不发生在局部半线性方程中,也不发生在非定域性线性方程中。也就是说,对于Cβ和2s+β<;1中的非线性f,对于所有ϵ>;0,解并不总是C2s+β−ε。相反,通常解u不超过C2s/(1 - β)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of optimal Hölder regularity in semilinear equations involving the fractional Laplacian
We discuss the Hölder regularity of solutions to the semilinear equation involving the fractional Laplacian (Δ)su=f(u) in one dimension. We put in evidence a new regularity phenomenon which is a combined effect of the nonlocality and the semilinearity of the equation, since it does not happen neither for local semilinear equations, nor for nonlocal linear equations. Namely, for nonlinearities f in Cβ and when 2s+β<1, the solution is not always C2s+βϵ for all ϵ>0. Instead, in general the solution u is at most C2s/(1β).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信