{"title":"由有限差分方法导出的晶格Boltzmann格式的非唯一性","authors":"Eliane Kummer, Stephan Simonis","doi":"10.1016/j.exco.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the construction of finite difference schemes from lattice Boltzmann schemes has been rigorously analyzed [Bellotti et al. (2022), Numer. Math. 152, pp. 1–40]. It is thus known that any lattice Boltzmann scheme can be expressed in terms of a corresponding multi-step finite difference scheme on the conserved variables. In the present work, we provide counterexamples for the conjecture that any multi-step finite difference scheme has a unique lattice Boltzmann formulation. Based on that, we indicate the existence of equivalence classes for discretized relaxation systems.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods\",\"authors\":\"Eliane Kummer, Stephan Simonis\",\"doi\":\"10.1016/j.exco.2024.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, the construction of finite difference schemes from lattice Boltzmann schemes has been rigorously analyzed [Bellotti et al. (2022), Numer. Math. 152, pp. 1–40]. It is thus known that any lattice Boltzmann scheme can be expressed in terms of a corresponding multi-step finite difference scheme on the conserved variables. In the present work, we provide counterexamples for the conjecture that any multi-step finite difference scheme has a unique lattice Boltzmann formulation. Based on that, we indicate the existence of equivalence classes for discretized relaxation systems.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"7 \",\"pages\":\"Article 100171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,格子Boltzmann格式的有限差分格式的构造得到了严格的分析[Bellotti et al. (2022), number。数学。152,第1-40页]。由此可知,任何晶格玻尔兹曼格式都可以用守恒变量上相应的多步有限差分格式来表示。在本工作中,我们提供了关于任何多步有限差分格式具有唯一晶格玻尔兹曼公式的猜想的反例。在此基础上,给出了离散松弛系统的等价类的存在性。
Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods
Recently, the construction of finite difference schemes from lattice Boltzmann schemes has been rigorously analyzed [Bellotti et al. (2022), Numer. Math. 152, pp. 1–40]. It is thus known that any lattice Boltzmann scheme can be expressed in terms of a corresponding multi-step finite difference scheme on the conserved variables. In the present work, we provide counterexamples for the conjecture that any multi-step finite difference scheme has a unique lattice Boltzmann formulation. Based on that, we indicate the existence of equivalence classes for discretized relaxation systems.