自旋-1/2自旋-轨道耦合玻色-爱因斯坦凝聚中的双组分条纹孤子态

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Fei-Yan Liu , Qin Zhou
{"title":"自旋-1/2自旋-轨道耦合玻色-爱因斯坦凝聚中的双组分条纹孤子态","authors":"Fei-Yan Liu ,&nbsp;Qin Zhou","doi":"10.1016/j.physd.2025.134540","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents various types of stripe solitons of the one-dimensional two-component Gross–Pitaevskii (GP) equation, which can be used to describe the dynamic evolution of matter–waves in the spin-1/2 spin–orbit-coupled Bose–Einstein condensates (BECs). Firstly, in the absence of Rabi coupling, the approximate bright and dark stripe solitons are constructed by the multi-scale expansion method, which are formed by the linear superposition of two lowest symmetric states in its linear energy spectrum. Secondly, in the absence of Zeeman splitting, exact nondegenerate and degenerate bright stripe solitons as well as the degenerate dark stripe solitons of the integrable GP equation are obtained by the Hirota’s bilinear method. Finally, the transmission stability of stripe solitons and the interaction between two stripe solitons are discussed.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134540"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-component stripe soliton states in spin-1/2 spin–orbit-coupled Bose–Einstein condensates\",\"authors\":\"Fei-Yan Liu ,&nbsp;Qin Zhou\",\"doi\":\"10.1016/j.physd.2025.134540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents various types of stripe solitons of the one-dimensional two-component Gross–Pitaevskii (GP) equation, which can be used to describe the dynamic evolution of matter–waves in the spin-1/2 spin–orbit-coupled Bose–Einstein condensates (BECs). Firstly, in the absence of Rabi coupling, the approximate bright and dark stripe solitons are constructed by the multi-scale expansion method, which are formed by the linear superposition of two lowest symmetric states in its linear energy spectrum. Secondly, in the absence of Zeeman splitting, exact nondegenerate and degenerate bright stripe solitons as well as the degenerate dark stripe solitons of the integrable GP equation are obtained by the Hirota’s bilinear method. Finally, the transmission stability of stripe solitons and the interaction between two stripe solitons are discussed.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"472 \",\"pages\":\"Article 134540\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000193\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一维双组分Gross-Pitaevskii (GP)方程的各种类型的条纹孤子,可以用来描述自旋-1/2自旋-轨道耦合玻色-爱因斯坦凝聚体(BECs)中物质波的动态演化。首先,在没有Rabi耦合的情况下,用多尺度展开法构造了其线性能谱中两个最低对称态的线性叠加形成的近似亮条孤子和暗条孤子;其次,在没有Zeeman分裂的情况下,利用Hirota双线性方法得到了可积GP方程的精确非简并和简并亮条孤子以及简并暗条孤子。最后讨论了条纹孤子的传输稳定性以及两个条纹孤子之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-component stripe soliton states in spin-1/2 spin–orbit-coupled Bose–Einstein condensates
This work presents various types of stripe solitons of the one-dimensional two-component Gross–Pitaevskii (GP) equation, which can be used to describe the dynamic evolution of matter–waves in the spin-1/2 spin–orbit-coupled Bose–Einstein condensates (BECs). Firstly, in the absence of Rabi coupling, the approximate bright and dark stripe solitons are constructed by the multi-scale expansion method, which are formed by the linear superposition of two lowest symmetric states in its linear energy spectrum. Secondly, in the absence of Zeeman splitting, exact nondegenerate and degenerate bright stripe solitons as well as the degenerate dark stripe solitons of the integrable GP equation are obtained by the Hirota’s bilinear method. Finally, the transmission stability of stripe solitons and the interaction between two stripe solitons are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信