儿童肺炎诊断的混合尺度动态注意力转换器

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Qian Chen , Lvhai Chen , Wenjie Nie , Xudong Li , Jingyuan Zheng , Jiajun Zhong , Yihua Wei , Yan Zhang , Rongrong Ji
{"title":"儿童肺炎诊断的混合尺度动态注意力转换器","authors":"Qian Chen ,&nbsp;Lvhai Chen ,&nbsp;Wenjie Nie ,&nbsp;Xudong Li ,&nbsp;Jingyuan Zheng ,&nbsp;Jiajun Zhong ,&nbsp;Yihua Wei ,&nbsp;Yan Zhang ,&nbsp;Rongrong Ji","doi":"10.1016/j.displa.2024.102953","DOIUrl":null,"url":null,"abstract":"<div><div>Pediatric pneumonia is a leading cause of morbidity and mortality in children under five, emphasizing the urgent need for automated diagnostic systems. While deep learning has shown promise in natural image classification, pediatric pneumonia imaging presents unique challenges, such as subtle symptoms, smaller anatomical structures, and the need for fine-grained feature extraction. To address this, We propose a Mixed-Scale Dynamic Attention Transformer aided by large language models (LLMs), which consists of three key modules: (1) Dynamic Local Attention Module: Dynamically focuses on nearby regions with fine-grained attention and applies coarse-grained attention to distant areas, effectively capturing both local and global spatial dependencies. (2) Hierarchical Multi-Scale Unit Module: Integrates and enhances multi-scale channel information, adapting to varying spatial scales to better detect subtle pneumonia-related features. (3) Attention Amplification Module: Leverages a frozen large language model (e.g., GPT, LLaMA) to amplify attention on critical pneumonia features by utilizing its rich semantic insights and global contextual understanding. Evaluations on pediatric chest X-ray datasets, including Pneumonia Physician, Guangzhou Women and Children’s Medical Center, and NIH CXR14, demonstrate the proposed method’s superior performance across key metrics such as accuracy, AUC, precision, recall, and F1-score.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102953"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed-scale dynamic attention transformer for pediatric pneumonia diagnosis\",\"authors\":\"Qian Chen ,&nbsp;Lvhai Chen ,&nbsp;Wenjie Nie ,&nbsp;Xudong Li ,&nbsp;Jingyuan Zheng ,&nbsp;Jiajun Zhong ,&nbsp;Yihua Wei ,&nbsp;Yan Zhang ,&nbsp;Rongrong Ji\",\"doi\":\"10.1016/j.displa.2024.102953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pediatric pneumonia is a leading cause of morbidity and mortality in children under five, emphasizing the urgent need for automated diagnostic systems. While deep learning has shown promise in natural image classification, pediatric pneumonia imaging presents unique challenges, such as subtle symptoms, smaller anatomical structures, and the need for fine-grained feature extraction. To address this, We propose a Mixed-Scale Dynamic Attention Transformer aided by large language models (LLMs), which consists of three key modules: (1) Dynamic Local Attention Module: Dynamically focuses on nearby regions with fine-grained attention and applies coarse-grained attention to distant areas, effectively capturing both local and global spatial dependencies. (2) Hierarchical Multi-Scale Unit Module: Integrates and enhances multi-scale channel information, adapting to varying spatial scales to better detect subtle pneumonia-related features. (3) Attention Amplification Module: Leverages a frozen large language model (e.g., GPT, LLaMA) to amplify attention on critical pneumonia features by utilizing its rich semantic insights and global contextual understanding. Evaluations on pediatric chest X-ray datasets, including Pneumonia Physician, Guangzhou Women and Children’s Medical Center, and NIH CXR14, demonstrate the proposed method’s superior performance across key metrics such as accuracy, AUC, precision, recall, and F1-score.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"87 \",\"pages\":\"Article 102953\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224003172\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224003172","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

儿童肺炎是五岁以下儿童发病和死亡的主要原因,这强调了对自动诊断系统的迫切需要。虽然深度学习在自然图像分类方面显示出前景,但儿童肺炎成像面临着独特的挑战,例如细微的症状、较小的解剖结构以及对细粒度特征提取的需求。为了解决这个问题,我们提出了一个由大型语言模型(llm)辅助的混合尺度动态注意力转换器,它由三个关键模块组成:(1)动态局部注意力模块:动态地关注具有细粒度注意力的附近区域,并将粗粒度注意力应用于远处区域,有效地捕获局部和全局空间依赖关系。(2)分层多尺度单元模块:整合和增强多尺度通道信息,适应不同的空间尺度,更好地检测肺炎相关的细微特征。(3)注意力放大模块:利用冻结的大型语言模型(如GPT、LLaMA),利用其丰富的语义洞察力和全局上下文理解,放大对肺炎关键特征的关注。对肺炎内科医生、广州妇女儿童医疗中心和NIH CXR14等儿科胸部x线数据集的评估表明,该方法在准确率、AUC、精密度、召回率和f1评分等关键指标上表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mixed-scale dynamic attention transformer for pediatric pneumonia diagnosis
Pediatric pneumonia is a leading cause of morbidity and mortality in children under five, emphasizing the urgent need for automated diagnostic systems. While deep learning has shown promise in natural image classification, pediatric pneumonia imaging presents unique challenges, such as subtle symptoms, smaller anatomical structures, and the need for fine-grained feature extraction. To address this, We propose a Mixed-Scale Dynamic Attention Transformer aided by large language models (LLMs), which consists of three key modules: (1) Dynamic Local Attention Module: Dynamically focuses on nearby regions with fine-grained attention and applies coarse-grained attention to distant areas, effectively capturing both local and global spatial dependencies. (2) Hierarchical Multi-Scale Unit Module: Integrates and enhances multi-scale channel information, adapting to varying spatial scales to better detect subtle pneumonia-related features. (3) Attention Amplification Module: Leverages a frozen large language model (e.g., GPT, LLaMA) to amplify attention on critical pneumonia features by utilizing its rich semantic insights and global contextual understanding. Evaluations on pediatric chest X-ray datasets, including Pneumonia Physician, Guangzhou Women and Children’s Medical Center, and NIH CXR14, demonstrate the proposed method’s superior performance across key metrics such as accuracy, AUC, precision, recall, and F1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信