贪婪选择和最短扩展的三维网格模型隐写

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kai Gao , Ji-Hwei Horng , Ching-Chun Chang , Chin-Chen Chang
{"title":"贪婪选择和最短扩展的三维网格模型隐写","authors":"Kai Gao ,&nbsp;Ji-Hwei Horng ,&nbsp;Ching-Chun Chang ,&nbsp;Chin-Chen Chang","doi":"10.1016/j.displa.2024.102961","DOIUrl":null,"url":null,"abstract":"<div><div>Data hiding in encrypted 3D mesh models has emerged as a promising crypto-space steganography technique. However, the existing methods have the potential to improve embedding capacity due to the underutilization of the model’s topological features. In this paper, we propose an innovative greedy selection and shortest expansion strategy to select a proper reference set of vertices. Subsequently, the multi-MSB prediction and entropy coding are leveraged to further reduce the redundancy in the vertex coordinates for data embedding. By combining the new strategy and the efficient compressing of the embeddable vertices, we can raise the vertex utilization rate to approximately 90%. Experimental results show that our proposed scheme outperforms state-of-the-art methods, offering a substantial improvement in data payload for reversible data hiding in encrypted 3D mesh models.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102961"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crypto-space steganography for 3D mesh models with greedy selection and shortest expansion\",\"authors\":\"Kai Gao ,&nbsp;Ji-Hwei Horng ,&nbsp;Ching-Chun Chang ,&nbsp;Chin-Chen Chang\",\"doi\":\"10.1016/j.displa.2024.102961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data hiding in encrypted 3D mesh models has emerged as a promising crypto-space steganography technique. However, the existing methods have the potential to improve embedding capacity due to the underutilization of the model’s topological features. In this paper, we propose an innovative greedy selection and shortest expansion strategy to select a proper reference set of vertices. Subsequently, the multi-MSB prediction and entropy coding are leveraged to further reduce the redundancy in the vertex coordinates for data embedding. By combining the new strategy and the efficient compressing of the embeddable vertices, we can raise the vertex utilization rate to approximately 90%. Experimental results show that our proposed scheme outperforms state-of-the-art methods, offering a substantial improvement in data payload for reversible data hiding in encrypted 3D mesh models.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"87 \",\"pages\":\"Article 102961\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224003251\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224003251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

数据隐藏在加密的三维网格模型中已经成为一种很有前途的加密空间隐写技术。然而,由于模型拓扑特征的利用不足,现有的方法有可能提高嵌入能力。在本文中,我们提出了一种创新的贪婪选择和最短展开策略来选择合适的参考点集。随后,利用多msb预测和熵编码,进一步降低顶点坐标的冗余度,用于数据嵌入。通过将新策略与可嵌入顶点的有效压缩相结合,可以将顶点利用率提高到90%左右。实验结果表明,我们提出的方案优于最先进的方法,为加密3D网格模型中的可逆数据隐藏提供了数据有效载荷的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crypto-space steganography for 3D mesh models with greedy selection and shortest expansion
Data hiding in encrypted 3D mesh models has emerged as a promising crypto-space steganography technique. However, the existing methods have the potential to improve embedding capacity due to the underutilization of the model’s topological features. In this paper, we propose an innovative greedy selection and shortest expansion strategy to select a proper reference set of vertices. Subsequently, the multi-MSB prediction and entropy coding are leveraged to further reduce the redundancy in the vertex coordinates for data embedding. By combining the new strategy and the efficient compressing of the embeddable vertices, we can raise the vertex utilization rate to approximately 90%. Experimental results show that our proposed scheme outperforms state-of-the-art methods, offering a substantial improvement in data payload for reversible data hiding in encrypted 3D mesh models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信