关于厄米动态模态分解的收敛性

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Nicolas Boullé , Matthew J. Colbrook
{"title":"关于厄米动态模态分解的收敛性","authors":"Nicolas Boullé ,&nbsp;Matthew J. Colbrook","doi":"10.1016/j.physd.2024.134405","DOIUrl":null,"url":null,"abstract":"<div><div>We study the convergence of Hermitian Dynamic Mode Decomposition (DMD) to the spectral properties of self-adjoint Koopman operators. Hermitian DMD is a data-driven method that approximates the Koopman operator associated with an unknown nonlinear dynamical system, using discrete-time snapshots. This approach preserves the self-adjointness of the operator in its finite-dimensional approximations. We prove that, under suitably broad conditions, the spectral measures corresponding to the eigenvalues and eigenfunctions computed by Hermitian DMD converge to those of the underlying Koopman operator. This result also applies to skew-Hermitian systems (after multiplication by <span><math><mi>i</mi></math></span>), applicable to generators of continuous-time measure-preserving systems. Along the way, we establish a general theorem on the convergence of spectral measures for finite sections of self-adjoint operators, including those that are unbounded, which is of independent interest to the wider spectral community. We numerically demonstrate our results by applying them to two-dimensional Schrödinger equations.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134405"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of Hermitian Dynamic Mode Decomposition\",\"authors\":\"Nicolas Boullé ,&nbsp;Matthew J. Colbrook\",\"doi\":\"10.1016/j.physd.2024.134405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the convergence of Hermitian Dynamic Mode Decomposition (DMD) to the spectral properties of self-adjoint Koopman operators. Hermitian DMD is a data-driven method that approximates the Koopman operator associated with an unknown nonlinear dynamical system, using discrete-time snapshots. This approach preserves the self-adjointness of the operator in its finite-dimensional approximations. We prove that, under suitably broad conditions, the spectral measures corresponding to the eigenvalues and eigenfunctions computed by Hermitian DMD converge to those of the underlying Koopman operator. This result also applies to skew-Hermitian systems (after multiplication by <span><math><mi>i</mi></math></span>), applicable to generators of continuous-time measure-preserving systems. Along the way, we establish a general theorem on the convergence of spectral measures for finite sections of self-adjoint operators, including those that are unbounded, which is of independent interest to the wider spectral community. We numerically demonstrate our results by applying them to two-dimensional Schrödinger equations.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"472 \",\"pages\":\"Article 134405\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003555\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了厄米动态模态分解(DMD)对自伴随Koopman算子谱性质的收敛性。厄米DMD是一种数据驱动的方法,它使用离散时间快照近似与未知非线性动力系统相关的库普曼算子。这种方法保留了算子在有限维近似中的自伴随性。证明了在适当的广义条件下,由厄米DMD计算的特征值和特征函数对应的谱测度收敛于底层库普曼算子的谱测度。这个结果也适用于斜厄米系统(乘以i后),适用于连续时间测度保持系统的生成器。在此过程中,我们建立了自伴随算子有限部分(包括无界算子)谱测度收敛的一般定理,这对更广泛的谱界具有独立的意义。我们通过将其应用于二维Schrödinger方程来数值证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the convergence of Hermitian Dynamic Mode Decomposition
We study the convergence of Hermitian Dynamic Mode Decomposition (DMD) to the spectral properties of self-adjoint Koopman operators. Hermitian DMD is a data-driven method that approximates the Koopman operator associated with an unknown nonlinear dynamical system, using discrete-time snapshots. This approach preserves the self-adjointness of the operator in its finite-dimensional approximations. We prove that, under suitably broad conditions, the spectral measures corresponding to the eigenvalues and eigenfunctions computed by Hermitian DMD converge to those of the underlying Koopman operator. This result also applies to skew-Hermitian systems (after multiplication by i), applicable to generators of continuous-time measure-preserving systems. Along the way, we establish a general theorem on the convergence of spectral measures for finite sections of self-adjoint operators, including those that are unbounded, which is of independent interest to the wider spectral community. We numerically demonstrate our results by applying them to two-dimensional Schrödinger equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信