树状结构变系数的置信区间

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nikolai Spuck , Matthias Schmid , Malte Monin , Moritz Berger
{"title":"树状结构变系数的置信区间","authors":"Nikolai Spuck ,&nbsp;Matthias Schmid ,&nbsp;Malte Monin ,&nbsp;Moritz Berger","doi":"10.1016/j.csda.2025.108142","DOIUrl":null,"url":null,"abstract":"<div><div>The tree-structured varying coefficient (TSVC) model is a flexible regression approach that allows the effects of covariates to vary with the values of the effect modifiers. Relevant effect modifiers are identified inherently using recursive partitioning techniques. To quantify uncertainty in TSVC models, a procedure to construct confidence intervals of the estimated partition-specific coefficients is proposed. This task constitutes a selective inference problem as the coefficients of a TSVC model result from data-driven model building. To account for this issue, a parametric bootstrap approach, which is tailored to the complex structure of TSVC, is introduced. Finite sample properties, particularly coverage proportions, of the proposed confidence intervals are evaluated in a simulation study. For illustration, applications to data from COVID-19 patients and from patients suffering from acute odontogenic infection are considered. The proposed approach may also be adapted for constructing confidence intervals for other tree-based methods.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"207 ","pages":"Article 108142"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence intervals for tree-structured varying coefficients\",\"authors\":\"Nikolai Spuck ,&nbsp;Matthias Schmid ,&nbsp;Malte Monin ,&nbsp;Moritz Berger\",\"doi\":\"10.1016/j.csda.2025.108142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tree-structured varying coefficient (TSVC) model is a flexible regression approach that allows the effects of covariates to vary with the values of the effect modifiers. Relevant effect modifiers are identified inherently using recursive partitioning techniques. To quantify uncertainty in TSVC models, a procedure to construct confidence intervals of the estimated partition-specific coefficients is proposed. This task constitutes a selective inference problem as the coefficients of a TSVC model result from data-driven model building. To account for this issue, a parametric bootstrap approach, which is tailored to the complex structure of TSVC, is introduced. Finite sample properties, particularly coverage proportions, of the proposed confidence intervals are evaluated in a simulation study. For illustration, applications to data from COVID-19 patients and from patients suffering from acute odontogenic infection are considered. The proposed approach may also be adapted for constructing confidence intervals for other tree-based methods.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"207 \",\"pages\":\"Article 108142\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325000180\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000180","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

树结构变系数(TSVC)模型是一种灵活的回归方法,它允许协变量的影响随效应修饰符的值而变化。使用递归划分技术固有地识别相关的效果修饰符。为了量化TSVC模型中的不确定性,提出了一种构造估计的分区特定系数置信区间的方法。该任务构成了一个选择性推理问题,因为TSVC模型的系数是由数据驱动的模型构建产生的。为了解决这个问题,引入了一种适合TSVC复杂结构的参数自举方法。在模拟研究中评估了所提出的置信区间的有限样本性质,特别是覆盖比例。举例来说,我们考虑了对COVID-19患者和急性牙源性感染患者数据的应用。所提出的方法也适用于构造其他基于树的方法的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence intervals for tree-structured varying coefficients
The tree-structured varying coefficient (TSVC) model is a flexible regression approach that allows the effects of covariates to vary with the values of the effect modifiers. Relevant effect modifiers are identified inherently using recursive partitioning techniques. To quantify uncertainty in TSVC models, a procedure to construct confidence intervals of the estimated partition-specific coefficients is proposed. This task constitutes a selective inference problem as the coefficients of a TSVC model result from data-driven model building. To account for this issue, a parametric bootstrap approach, which is tailored to the complex structure of TSVC, is introduced. Finite sample properties, particularly coverage proportions, of the proposed confidence intervals are evaluated in a simulation study. For illustration, applications to data from COVID-19 patients and from patients suffering from acute odontogenic infection are considered. The proposed approach may also be adapted for constructing confidence intervals for other tree-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信