Yingzi Wang , Ce Yu , Xianglei Zhu , Hongcan Gao , Jie Shang
{"title":"可靠的新能源汽车监测的堆叠神经滤波网络","authors":"Yingzi Wang , Ce Yu , Xianglei Zhu , Hongcan Gao , Jie Shang","doi":"10.1016/j.displa.2025.102976","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable monitoring of new energy vehicles (NEVs) is crucial for ensuring traffic safety and energy efficiency. However, traditional Transformer-based methods struggle with quadratic computational complexity and sensitivity to noise due to the self-attention mechanism, leading to efficiency and accuracy limitations in real-time applications. To address these issues, we propose the Stacked Neural Filtering Network (SNFN), which replaces self-attention with a learnable filter block that operates in the frequency domain, reducing complexity to logarithmic-linear levels. This novel design improves computational efficiency, mitigates overfitting, and enhances noise robustness. Experimental evaluations on two real-world NEV datasets demonstrate that SNFN consistently achieves superior accuracy and efficiency compared to traditional methods, making it a reliable solution for real-time NEV monitoring.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102976"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacked neural filtering network for reliable NEV monitoring\",\"authors\":\"Yingzi Wang , Ce Yu , Xianglei Zhu , Hongcan Gao , Jie Shang\",\"doi\":\"10.1016/j.displa.2025.102976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable monitoring of new energy vehicles (NEVs) is crucial for ensuring traffic safety and energy efficiency. However, traditional Transformer-based methods struggle with quadratic computational complexity and sensitivity to noise due to the self-attention mechanism, leading to efficiency and accuracy limitations in real-time applications. To address these issues, we propose the Stacked Neural Filtering Network (SNFN), which replaces self-attention with a learnable filter block that operates in the frequency domain, reducing complexity to logarithmic-linear levels. This novel design improves computational efficiency, mitigates overfitting, and enhances noise robustness. Experimental evaluations on two real-world NEV datasets demonstrate that SNFN consistently achieves superior accuracy and efficiency compared to traditional methods, making it a reliable solution for real-time NEV monitoring.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"87 \",\"pages\":\"Article 102976\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225000137\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000137","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Stacked neural filtering network for reliable NEV monitoring
Reliable monitoring of new energy vehicles (NEVs) is crucial for ensuring traffic safety and energy efficiency. However, traditional Transformer-based methods struggle with quadratic computational complexity and sensitivity to noise due to the self-attention mechanism, leading to efficiency and accuracy limitations in real-time applications. To address these issues, we propose the Stacked Neural Filtering Network (SNFN), which replaces self-attention with a learnable filter block that operates in the frequency domain, reducing complexity to logarithmic-linear levels. This novel design improves computational efficiency, mitigates overfitting, and enhances noise robustness. Experimental evaluations on two real-world NEV datasets demonstrate that SNFN consistently achieves superior accuracy and efficiency compared to traditional methods, making it a reliable solution for real-time NEV monitoring.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.