通过布局合理性进行3D室内场景评估

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xinyan Yang , Fei Hu , Shaofei Liu , Long Ye , Ye Wang , Guanghua Zhu , Jiyin Li
{"title":"通过布局合理性进行3D室内场景评估","authors":"Xinyan Yang ,&nbsp;Fei Hu ,&nbsp;Shaofei Liu ,&nbsp;Long Ye ,&nbsp;Ye Wang ,&nbsp;Guanghua Zhu ,&nbsp;Jiyin Li","doi":"10.1016/j.displa.2025.102964","DOIUrl":null,"url":null,"abstract":"<div><div>As the amount of 3D scene data increases, plausibility quality assessment methods are urgently needed. The existing 3D scene assessment methods usually focus on visual but not semantical reasonability. The amounts and categories of the open-source 3D indoor scene data are still inadequate for training fully labeled learning assessment methods. In this paper, we build a minority category of 3D indoor scene assessment dataset 3D-SPAD-MI to extend the previous majority 3D-SPAD dataset. And expanding application scope and improving performance of the previous method 3D scene plausibility assessment network(3D-SPAN) by multimodality model(3D-SPAN-M) and few-shot learning(3D-SPAN-F). 3D-SPAN-M considers vision and semantics in 3D indoor scenes via fusing image and scene graph features. 3D-SPAN-F introduces multi-task meta-learning with prototypical networks into the 3D-SPAN so that it could evaluate more different categories of 3D indoor scenes. The comparison and ablation experiments verify performance improvement and generalization of our method.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102964"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D indoor scene assessment via layout plausibility\",\"authors\":\"Xinyan Yang ,&nbsp;Fei Hu ,&nbsp;Shaofei Liu ,&nbsp;Long Ye ,&nbsp;Ye Wang ,&nbsp;Guanghua Zhu ,&nbsp;Jiyin Li\",\"doi\":\"10.1016/j.displa.2025.102964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the amount of 3D scene data increases, plausibility quality assessment methods are urgently needed. The existing 3D scene assessment methods usually focus on visual but not semantical reasonability. The amounts and categories of the open-source 3D indoor scene data are still inadequate for training fully labeled learning assessment methods. In this paper, we build a minority category of 3D indoor scene assessment dataset 3D-SPAD-MI to extend the previous majority 3D-SPAD dataset. And expanding application scope and improving performance of the previous method 3D scene plausibility assessment network(3D-SPAN) by multimodality model(3D-SPAN-M) and few-shot learning(3D-SPAN-F). 3D-SPAN-M considers vision and semantics in 3D indoor scenes via fusing image and scene graph features. 3D-SPAN-F introduces multi-task meta-learning with prototypical networks into the 3D-SPAN so that it could evaluate more different categories of 3D indoor scenes. The comparison and ablation experiments verify performance improvement and generalization of our method.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"87 \",\"pages\":\"Article 102964\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225000010\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000010","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着三维场景数据量的增加,迫切需要可信性质量评价方法。现有的三维场景评价方法往往侧重于视觉合理性,而忽略了语义合理性。开源3D室内场景数据的数量和类别仍然不足以训练完全标记的学习评估方法。在本文中,我们建立了一个少数类别的3D室内场景评估数据集3D- spad - mi,以扩展之前的大多数3D- spad数据集。通过多模态模型(3D- span - m)和少镜头学习(3D- span - f),扩大了3D场景合理性评估网络(3D- span)的应用范围,提高了其性能。3D- span - m通过融合图像和场景图形特征来考虑3D室内场景的视觉和语义。3D- span - f在3D- span中引入了带有原型网络的多任务元学习,使其能够评估更多不同类别的3D室内场景。对比和烧蚀实验验证了该方法的性能改进和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D indoor scene assessment via layout plausibility
As the amount of 3D scene data increases, plausibility quality assessment methods are urgently needed. The existing 3D scene assessment methods usually focus on visual but not semantical reasonability. The amounts and categories of the open-source 3D indoor scene data are still inadequate for training fully labeled learning assessment methods. In this paper, we build a minority category of 3D indoor scene assessment dataset 3D-SPAD-MI to extend the previous majority 3D-SPAD dataset. And expanding application scope and improving performance of the previous method 3D scene plausibility assessment network(3D-SPAN) by multimodality model(3D-SPAN-M) and few-shot learning(3D-SPAN-F). 3D-SPAN-M considers vision and semantics in 3D indoor scenes via fusing image and scene graph features. 3D-SPAN-F introduces multi-task meta-learning with prototypical networks into the 3D-SPAN so that it could evaluate more different categories of 3D indoor scenes. The comparison and ablation experiments verify performance improvement and generalization of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信