有序转幂域

IF 0.6 2区 数学 Q2 LOGIC
Lothar Sebastian Krapp , Salma Kuhlmann
{"title":"有序转幂域","authors":"Lothar Sebastian Krapp ,&nbsp;Salma Kuhlmann","doi":"10.1016/j.apal.2024.103541","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a first-order theory of ordered transexponential fields in the language <span><math><mo>{</mo><mo>+</mo><mo>,</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>&lt;</mo><mo>,</mo><mi>e</mi><mo>,</mo><mi>T</mi><mo>}</mo></math></span>, where <em>e</em> and <em>T</em> stand for unary function symbols. While the archimedean models of this theory are readily described, the study of the non-archimedean models leads to a systematic examination of the induced structure on the residue field and the value group under the natural valuation. We establish necessary and sufficient conditions on the value group of an ordered exponential field <span><math><mo>(</mo><mi>K</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> to admit a transexponential function <em>T</em> compatible with <em>e</em>. Moreover, we give a full characterisation of all <em>countable</em> ordered transexponential fields in terms of their valuation theoretic invariants.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 4","pages":"Article 103541"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordered transexponential fields\",\"authors\":\"Lothar Sebastian Krapp ,&nbsp;Salma Kuhlmann\",\"doi\":\"10.1016/j.apal.2024.103541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a first-order theory of ordered transexponential fields in the language <span><math><mo>{</mo><mo>+</mo><mo>,</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>&lt;</mo><mo>,</mo><mi>e</mi><mo>,</mo><mi>T</mi><mo>}</mo></math></span>, where <em>e</em> and <em>T</em> stand for unary function symbols. While the archimedean models of this theory are readily described, the study of the non-archimedean models leads to a systematic examination of the induced structure on the residue field and the value group under the natural valuation. We establish necessary and sufficient conditions on the value group of an ordered exponential field <span><math><mo>(</mo><mi>K</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> to admit a transexponential function <em>T</em> compatible with <em>e</em>. Moreover, we give a full characterisation of all <em>countable</em> ordered transexponential fields in terms of their valuation theoretic invariants.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 4\",\"pages\":\"Article 103541\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224001453\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001453","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们在{+,⋅,0,1,<,e,T}语言中建立了有序转幂域的一阶理论,其中e和T代表一元函数符号。虽然该理论的阿基米德模型很容易描述,但对非阿基米德模型的研究导致了对剩余场和自然估值下的值群的诱导结构的系统检查。在有序指数域(K,e)的值群上建立了允许转幂函数T与e相容的充要条件,并给出了所有可数有序转幂域的赋值理论不变量的完整刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordered transexponential fields
We develop a first-order theory of ordered transexponential fields in the language {+,,0,1,<,e,T}, where e and T stand for unary function symbols. While the archimedean models of this theory are readily described, the study of the non-archimedean models leads to a systematic examination of the induced structure on the residue field and the value group under the natural valuation. We establish necessary and sufficient conditions on the value group of an ordered exponential field (K,e) to admit a transexponential function T compatible with e. Moreover, we give a full characterisation of all countable ordered transexponential fields in terms of their valuation theoretic invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信