正可定义性模式

IF 0.6 2区 数学 Q2 LOGIC
Ori Segel
{"title":"正可定义性模式","authors":"Ori Segel","doi":"10.1016/j.apal.2024.103539","DOIUrl":null,"url":null,"abstract":"<div><div>We reformulate Hrushovski's definability patterns from the setting of first order logic to the setting of positive logic. Given an h-universal theory <em>T</em> we put two structures on the type spaces of models of <em>T</em> in two languages, <span><math><mi>L</mi></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>. It turns out that for sufficiently saturated models, the corresponding h-universal theories <span><math><mi>T</mi></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> are independent of the model. We show that there is a canonical model <span><math><mi>J</mi></math></span> of <span><math><mi>T</mi></math></span>, and in many interesting cases there is an analogous canonical model <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>, both of which embed into every type space. We discuss the properties of these canonical models, called cores, and give some concrete examples.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 4","pages":"Article 103539"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive definability patterns\",\"authors\":\"Ori Segel\",\"doi\":\"10.1016/j.apal.2024.103539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We reformulate Hrushovski's definability patterns from the setting of first order logic to the setting of positive logic. Given an h-universal theory <em>T</em> we put two structures on the type spaces of models of <em>T</em> in two languages, <span><math><mi>L</mi></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>. It turns out that for sufficiently saturated models, the corresponding h-universal theories <span><math><mi>T</mi></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> are independent of the model. We show that there is a canonical model <span><math><mi>J</mi></math></span> of <span><math><mi>T</mi></math></span>, and in many interesting cases there is an analogous canonical model <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>, both of which embed into every type space. We discuss the properties of these canonical models, called cores, and give some concrete examples.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 4\",\"pages\":\"Article 103539\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722400143X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722400143X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们将赫鲁晓夫斯基的可定义模式从一阶逻辑的设定重新表述到正逻辑的设定。给定一个h-全称理论T,我们在L和Lπ两种语言的T模型的类型空间上放置了两个结构。结果表明,对于充分饱和的模型,相应的h-泛理论T和Tπ是独立于模型的。我们证明了存在一个正则模型J (T),并且在许多有趣的情况下存在一个类似的正则模型Jπ (Tπ),这两个模型都嵌入到每个类型空间中。我们讨论了这些称为核的规范模型的性质,并给出了一些具体的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive definability patterns
We reformulate Hrushovski's definability patterns from the setting of first order logic to the setting of positive logic. Given an h-universal theory T we put two structures on the type spaces of models of T in two languages, L and Lπ. It turns out that for sufficiently saturated models, the corresponding h-universal theories T and Tπ are independent of the model. We show that there is a canonical model J of T, and in many interesting cases there is an analogous canonical model Jπ of Tπ, both of which embed into every type space. We discuss the properties of these canonical models, called cores, and give some concrete examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信