溅射沉积银膜作为等离子体活化水中拉曼信号增强的替代工具

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Nilton F. Azevedo Neto , Samuel A. Marques , Felipe S. Miranda , Pedro W.P. Moreira Junior , Andre L.J. Pereira , Carlos J.L. Constantino , José H. Dias da Silva , Rodrigo S. Pessoa
{"title":"溅射沉积银膜作为等离子体活化水中拉曼信号增强的替代工具","authors":"Nilton F. Azevedo Neto ,&nbsp;Samuel A. Marques ,&nbsp;Felipe S. Miranda ,&nbsp;Pedro W.P. Moreira Junior ,&nbsp;Andre L.J. Pereira ,&nbsp;Carlos J.L. Constantino ,&nbsp;José H. Dias da Silva ,&nbsp;Rodrigo S. Pessoa","doi":"10.1016/j.vibspec.2024.103765","DOIUrl":null,"url":null,"abstract":"<div><div>Plasma-activated water (PAW), generated by non-thermal plasma, has shown great potential in various applications, including bacterial inactivation, agriculture, and disinfection, primarily attributed to the presence of reactive oxygen and nitrogen species (RONS). Traditional characterization methods for RONS in PAW often encounter limitations in sensitivity and specificity, particularly at low concentrations. In this study, we investigated the application of surface-enhanced Raman spectroscopy (SERS) for the characterization of PAW. A SERS substrate was prepared by sputter-depositing a silver (Ag) film onto a cover glass. The structural, topographic, and optical properties of the film were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and reflectance spectroscopy. Utilizing the Ag film substrates, we observed a substantial enhancement in the Raman signals of deionized water compared to measurements on glass substrates, achieving an analytical enhancement factor (AEF) of approximately 30 for the O–H stretching band. The characterization of PAW using the SERS substrate enabled the acquisition of well-defined Raman spectra and facilitated the detection of nitrate ions (NO₃⁻) in PAW generated by a dielectric barrier discharge reactor. The results obtained from the PAW Raman spectra were further supported by changes in physicochemical properties, such as decreased pH and increased conductivity, as well as UV-Vis spectroscopy results. These findings demonstrate that sputter-deposited Ag films can serve as a valuable methodological tool for the characterization of PAW using Raman spectroscopy.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"136 ","pages":"Article 103765"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sputter deposited silver film as an alternative tool for Raman signal enhancement in plasma-activated water\",\"authors\":\"Nilton F. Azevedo Neto ,&nbsp;Samuel A. Marques ,&nbsp;Felipe S. Miranda ,&nbsp;Pedro W.P. Moreira Junior ,&nbsp;Andre L.J. Pereira ,&nbsp;Carlos J.L. Constantino ,&nbsp;José H. Dias da Silva ,&nbsp;Rodrigo S. Pessoa\",\"doi\":\"10.1016/j.vibspec.2024.103765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plasma-activated water (PAW), generated by non-thermal plasma, has shown great potential in various applications, including bacterial inactivation, agriculture, and disinfection, primarily attributed to the presence of reactive oxygen and nitrogen species (RONS). Traditional characterization methods for RONS in PAW often encounter limitations in sensitivity and specificity, particularly at low concentrations. In this study, we investigated the application of surface-enhanced Raman spectroscopy (SERS) for the characterization of PAW. A SERS substrate was prepared by sputter-depositing a silver (Ag) film onto a cover glass. The structural, topographic, and optical properties of the film were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and reflectance spectroscopy. Utilizing the Ag film substrates, we observed a substantial enhancement in the Raman signals of deionized water compared to measurements on glass substrates, achieving an analytical enhancement factor (AEF) of approximately 30 for the O–H stretching band. The characterization of PAW using the SERS substrate enabled the acquisition of well-defined Raman spectra and facilitated the detection of nitrate ions (NO₃⁻) in PAW generated by a dielectric barrier discharge reactor. The results obtained from the PAW Raman spectra were further supported by changes in physicochemical properties, such as decreased pH and increased conductivity, as well as UV-Vis spectroscopy results. These findings demonstrate that sputter-deposited Ag films can serve as a valuable methodological tool for the characterization of PAW using Raman spectroscopy.</div></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"136 \",\"pages\":\"Article 103765\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203124001188\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124001188","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

等离子体活化水(PAW)由非热等离子体产生,在各种应用中显示出巨大的潜力,包括细菌灭活,农业和消毒,主要归因于活性氧和氮物种(RONS)的存在。传统的表征方法在敏感性和特异性上往往存在局限性,特别是在低浓度下。在这项研究中,我们研究了表面增强拉曼光谱(SERS)在PAW表征中的应用。通过溅射沉积银(Ag)膜到覆盖玻璃上制备了SERS衬底。利用x射线衍射(XRD)、原子力显微镜(AFM)和反射光谱对膜的结构、形貌和光学性能进行了表征。利用Ag薄膜衬底,我们观察到去离子水的拉曼信号与玻璃衬底的测量结果相比有显著增强,O-H拉伸带的分析增强因子(AEF)约为30。使用SERS衬底对PAW进行表征,可以获得定义良好的拉曼光谱,并有助于在介质阻挡放电反应器产生的PAW中检测硝酸盐离子(NO₃⁻)。从PAW拉曼光谱得到的结果进一步得到了物理化学性质变化的支持,如pH值降低和电导率增加,以及UV-Vis光谱结果。这些发现表明,溅射沉积Ag薄膜可以作为一种有价值的方法工具,用拉曼光谱来表征PAW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sputter deposited silver film as an alternative tool for Raman signal enhancement in plasma-activated water
Plasma-activated water (PAW), generated by non-thermal plasma, has shown great potential in various applications, including bacterial inactivation, agriculture, and disinfection, primarily attributed to the presence of reactive oxygen and nitrogen species (RONS). Traditional characterization methods for RONS in PAW often encounter limitations in sensitivity and specificity, particularly at low concentrations. In this study, we investigated the application of surface-enhanced Raman spectroscopy (SERS) for the characterization of PAW. A SERS substrate was prepared by sputter-depositing a silver (Ag) film onto a cover glass. The structural, topographic, and optical properties of the film were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and reflectance spectroscopy. Utilizing the Ag film substrates, we observed a substantial enhancement in the Raman signals of deionized water compared to measurements on glass substrates, achieving an analytical enhancement factor (AEF) of approximately 30 for the O–H stretching band. The characterization of PAW using the SERS substrate enabled the acquisition of well-defined Raman spectra and facilitated the detection of nitrate ions (NO₃⁻) in PAW generated by a dielectric barrier discharge reactor. The results obtained from the PAW Raman spectra were further supported by changes in physicochemical properties, such as decreased pH and increased conductivity, as well as UV-Vis spectroscopy results. These findings demonstrate that sputter-deposited Ag films can serve as a valuable methodological tool for the characterization of PAW using Raman spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信