Michael Schnekenburger , Eric Goffin , Matthieu Schoumacher , Nikolay Tumanov , Ange Mouithys-Mickalad , Pascal de Tullio , Johan Wouters , Philippe Lebrun , Marc Diederich , Bernard Pirotte
{"title":"抗癌剂R/ s - n- 3-氰苯- n '-(6-叔丁基羰基氨基-3,4-二氢-2,2-二甲基- 2h -1-苯并吡喃-4-基)尿素对映体的制备及药理特性:R-对映体为活性自聚体的鉴定","authors":"Michael Schnekenburger , Eric Goffin , Matthieu Schoumacher , Nikolay Tumanov , Ange Mouithys-Mickalad , Pascal de Tullio , Johan Wouters , Philippe Lebrun , Marc Diederich , Bernard Pirotte","doi":"10.1016/j.ejmcr.2024.100244","DOIUrl":null,"url":null,"abstract":"<div><div>R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2<em>H</em>-1-benzopyran-4-yl)urea (BPDZ 711, <strong>4</strong>) initially designed as a K<sub>ATP</sub> channel opener, was found to exhibit diverse biological activities. The compound inhibited insulin release from rat pancreatic islets, indicating a potential effect on glucose metabolism. Oxygraphy measurements on chronic myeloid leukemia (CML) K-562 cells revealed an impact on cellular respiration. Additionally, the compound demonstrated inhibitory activity on histone deacetylase class III enzymes (sirtuins), linking metabolic and epigenetic regulation. This was corroborated by its effect on protein acetylation and modulation of the extracellular pH of treated CML cells. Alterations in CML cells' nuclear morphology and the release of high-mobility group box 1 (HMGB1) protein confirmed mechanisms related to cellular stress and immunogenic cell death. BPDZ 711 preserved the viability of peripheral blood mononuclear cells, thus demonstrating excellent differential toxicity.</div><div>Since BPDZ 711 is a racemate, the present study focused on the preparation of the two enantiomers and examined the possibility that each isomer could display a distinct pharmacological profile. Our data revealed that the R-enantiomer (<strong>5</strong>) of BPDZ 711 was consistently the most biologically active compound (eutomer), making it the reference compound for future drug discovery and development.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"13 ","pages":"Article 100244"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and pharmacological characterization of the enantiomers of the anticancer agent R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)urea: Identification of the R-enantiomer as the active eutomer\",\"authors\":\"Michael Schnekenburger , Eric Goffin , Matthieu Schoumacher , Nikolay Tumanov , Ange Mouithys-Mickalad , Pascal de Tullio , Johan Wouters , Philippe Lebrun , Marc Diederich , Bernard Pirotte\",\"doi\":\"10.1016/j.ejmcr.2024.100244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2<em>H</em>-1-benzopyran-4-yl)urea (BPDZ 711, <strong>4</strong>) initially designed as a K<sub>ATP</sub> channel opener, was found to exhibit diverse biological activities. The compound inhibited insulin release from rat pancreatic islets, indicating a potential effect on glucose metabolism. Oxygraphy measurements on chronic myeloid leukemia (CML) K-562 cells revealed an impact on cellular respiration. Additionally, the compound demonstrated inhibitory activity on histone deacetylase class III enzymes (sirtuins), linking metabolic and epigenetic regulation. This was corroborated by its effect on protein acetylation and modulation of the extracellular pH of treated CML cells. Alterations in CML cells' nuclear morphology and the release of high-mobility group box 1 (HMGB1) protein confirmed mechanisms related to cellular stress and immunogenic cell death. BPDZ 711 preserved the viability of peripheral blood mononuclear cells, thus demonstrating excellent differential toxicity.</div><div>Since BPDZ 711 is a racemate, the present study focused on the preparation of the two enantiomers and examined the possibility that each isomer could display a distinct pharmacological profile. Our data revealed that the R-enantiomer (<strong>5</strong>) of BPDZ 711 was consistently the most biologically active compound (eutomer), making it the reference compound for future drug discovery and development.</div></div>\",\"PeriodicalId\":12015,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry Reports\",\"volume\":\"13 \",\"pages\":\"Article 100244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277241742400116X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241742400116X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
R/ s - n- 3-氰苯基- n '-(6-叔丁基羰基氨基-3,4-二氢-2,2-二甲基- 2h -1-苯并吡喃-4-基)尿素(BPDZ 71,4)最初被设计为KATP通道开启剂,具有多种生物活性。该化合物抑制胰岛素从大鼠胰岛释放,表明其对葡萄糖代谢的潜在影响。对慢性髓性白血病(CML) K-562细胞的氧描测量揭示了对细胞呼吸的影响。此外,该化合物还显示出对组蛋白去乙酰化酶III类酶(sirtuins)的抑制活性,这与代谢和表观遗传调控有关。这是证实了其作用的蛋白质乙酰化和调节细胞外pH处理CML细胞。CML细胞核形态的改变和高迁移率组盒1 (HMGB1)蛋白的释放证实了细胞应激和免疫原性细胞死亡的相关机制。BPDZ 711保留了外周血单个核细胞的活力,因此显示出优异的差异毒性。由于BPDZ 711是外消旋体,本研究主要关注两种对映体的制备,并研究了每种异构体可能表现出不同药理特征的可能性。我们的数据显示,BPDZ 711的r -对映体(5)一直是最具生物活性的化合物(eutomer),使其成为未来药物发现和开发的参考化合物。
Preparation and pharmacological characterization of the enantiomers of the anticancer agent R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)urea: Identification of the R-enantiomer as the active eutomer
R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)urea (BPDZ 711, 4) initially designed as a KATP channel opener, was found to exhibit diverse biological activities. The compound inhibited insulin release from rat pancreatic islets, indicating a potential effect on glucose metabolism. Oxygraphy measurements on chronic myeloid leukemia (CML) K-562 cells revealed an impact on cellular respiration. Additionally, the compound demonstrated inhibitory activity on histone deacetylase class III enzymes (sirtuins), linking metabolic and epigenetic regulation. This was corroborated by its effect on protein acetylation and modulation of the extracellular pH of treated CML cells. Alterations in CML cells' nuclear morphology and the release of high-mobility group box 1 (HMGB1) protein confirmed mechanisms related to cellular stress and immunogenic cell death. BPDZ 711 preserved the viability of peripheral blood mononuclear cells, thus demonstrating excellent differential toxicity.
Since BPDZ 711 is a racemate, the present study focused on the preparation of the two enantiomers and examined the possibility that each isomer could display a distinct pharmacological profile. Our data revealed that the R-enantiomer (5) of BPDZ 711 was consistently the most biologically active compound (eutomer), making it the reference compound for future drug discovery and development.