中试规模气泡塔曝气集成混合模型预测的实时增量学习实现

IF 3 Q2 ENGINEERING, CHEMICAL
Peter Jul-Rasmussen , Mads Stevnsborg , Xiaodong Liang , Jakob Kjøbsted Huusom
{"title":"中试规模气泡塔曝气集成混合模型预测的实时增量学习实现","authors":"Peter Jul-Rasmussen ,&nbsp;Mads Stevnsborg ,&nbsp;Xiaodong Liang ,&nbsp;Jakob Kjøbsted Huusom","doi":"10.1016/j.dche.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Digital twins are frequently discussed in a bio-manufacturing context, but actual realisations of digital twins are rare. To use digital twin instances, significant investments in digital infrastructure and high-fidelity mathematical models are required. This work presents a real-time implementation of an ensemble hybrid model with incremental learning for predicting dissolved oxygen concentration in a pilot-scale bubble column. A bootstrap-aggregated hybrid modelling framework is applied for constructing an ensemble of 1000 hybrid models using different partitions of the training/validation data, providing a measure of the parameter distributions and prediction uncertainty. Each model in the ensemble hybrid model has the same model structure relying on first-principles material balances and an Artificial Neural Network for prediction of the liquid phase volumetric mass transfer coefficient. Incremental learning is applied, efficiently enabling the model to adapt to new data acquired during runtime. The software implementation follows recent ISO issues using a modular structure allowing for flexible allocation of server resources and an intuitive User-Interface is developed for controlling the application. From a real-time prediction study, the models using incremental learning are found to have superior performance both at normal operating conditions, when interpolating, and when extrapolating compared to using only the pre-trained model.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100212"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of real-time incremental learning for ensemble hybrid model prediction in pilot scale bubble column aeration\",\"authors\":\"Peter Jul-Rasmussen ,&nbsp;Mads Stevnsborg ,&nbsp;Xiaodong Liang ,&nbsp;Jakob Kjøbsted Huusom\",\"doi\":\"10.1016/j.dche.2024.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital twins are frequently discussed in a bio-manufacturing context, but actual realisations of digital twins are rare. To use digital twin instances, significant investments in digital infrastructure and high-fidelity mathematical models are required. This work presents a real-time implementation of an ensemble hybrid model with incremental learning for predicting dissolved oxygen concentration in a pilot-scale bubble column. A bootstrap-aggregated hybrid modelling framework is applied for constructing an ensemble of 1000 hybrid models using different partitions of the training/validation data, providing a measure of the parameter distributions and prediction uncertainty. Each model in the ensemble hybrid model has the same model structure relying on first-principles material balances and an Artificial Neural Network for prediction of the liquid phase volumetric mass transfer coefficient. Incremental learning is applied, efficiently enabling the model to adapt to new data acquired during runtime. The software implementation follows recent ISO issues using a modular structure allowing for flexible allocation of server resources and an intuitive User-Interface is developed for controlling the application. From a real-time prediction study, the models using incremental learning are found to have superior performance both at normal operating conditions, when interpolating, and when extrapolating compared to using only the pre-trained model.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"14 \",\"pages\":\"Article 100212\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

数字双胞胎经常在生物制造环境中被讨论,但数字双胞胎的实际实现很少。要使用数字孪生实例,需要对数字基础设施和高保真数学模型进行大量投资。这项工作提出了一个集成混合模型与增量学习的实时实现,用于预测中试规模气泡柱中的溶解氧浓度。利用训练/验证数据的不同分区,构建了一个由1000个混合模型组成的集合,提供了参数分布和预测不确定性的度量。集合混合模型中的每个模型都具有相同的模型结构,依赖第一性原理物质平衡和人工神经网络来预测液相体积传质系数。采用增量学习,有效地使模型适应运行时获取的新数据。软件实现遵循最近的ISO问题,使用模块化结构允许灵活分配服务器资源,并开发了一个直观的用户界面来控制应用程序。从一项实时预测研究中发现,与仅使用预训练模型相比,使用增量学习的模型在正常操作条件下、内插和外推时都具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of real-time incremental learning for ensemble hybrid model prediction in pilot scale bubble column aeration
Digital twins are frequently discussed in a bio-manufacturing context, but actual realisations of digital twins are rare. To use digital twin instances, significant investments in digital infrastructure and high-fidelity mathematical models are required. This work presents a real-time implementation of an ensemble hybrid model with incremental learning for predicting dissolved oxygen concentration in a pilot-scale bubble column. A bootstrap-aggregated hybrid modelling framework is applied for constructing an ensemble of 1000 hybrid models using different partitions of the training/validation data, providing a measure of the parameter distributions and prediction uncertainty. Each model in the ensemble hybrid model has the same model structure relying on first-principles material balances and an Artificial Neural Network for prediction of the liquid phase volumetric mass transfer coefficient. Incremental learning is applied, efficiently enabling the model to adapt to new data acquired during runtime. The software implementation follows recent ISO issues using a modular structure allowing for flexible allocation of server resources and an intuitive User-Interface is developed for controlling the application. From a real-time prediction study, the models using incremental learning are found to have superior performance both at normal operating conditions, when interpolating, and when extrapolating compared to using only the pre-trained model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信