基于集成automl的页岩气生产优化框架——以涪陵页岩气田为例

IF 3.6
Tianrui Ye , Jin Meng , Yitian Xiao , Yaqiu Lu , Aiwei Zheng , Bang Liang
{"title":"基于集成automl的页岩气生产优化框架——以涪陵页岩气田为例","authors":"Tianrui Ye ,&nbsp;Jin Meng ,&nbsp;Yitian Xiao ,&nbsp;Yaqiu Lu ,&nbsp;Aiwei Zheng ,&nbsp;Bang Liang","doi":"10.1016/j.engeos.2024.100365","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a comprehensive and automated framework that leverages data-driven methodologies to address various challenges in shale gas development and production. Specifically, it harnesses the power of Automated Machine Learning (AutoML) to construct an ensemble model to predict the estimated ultimate recovery (<em>EUR</em>) of shale gas wells. To demystify the “black-box” nature of the ensemble model, KernelSHAP, a kernel-based approach to compute Shapley values, is utilized for elucidating the influential factors that affect shale gas production at both global and local scales. Furthermore, a bi-objective optimization algorithm named NSGA-II is seamlessly incorporated to optimize hydraulic fracturing designs for production boost and cost control. This innovative framework addresses critical limitations often encountered in applying machine learning (ML) to shale gas production: the challenge of achieving sufficient model accuracy with limited samples, the multidisciplinary expertise required for developing robust ML models, and the need for interpretability in “black-box” models. Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques. The test accuracy of the ensemble ML model reached 83 % compared to a maximum of 72 % of single ML models. The contribution of each geological and engineering factor to the overall production was quantitatively evaluated. Fracturing design optimization raised <em>EUR</em> by 7 %–34 % under different production and cost tradeoff scenarios. The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.</div></div>","PeriodicalId":100469,"journal":{"name":"Energy Geoscience","volume":"6 1","pages":"Article 100365"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field\",\"authors\":\"Tianrui Ye ,&nbsp;Jin Meng ,&nbsp;Yitian Xiao ,&nbsp;Yaqiu Lu ,&nbsp;Aiwei Zheng ,&nbsp;Bang Liang\",\"doi\":\"10.1016/j.engeos.2024.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a comprehensive and automated framework that leverages data-driven methodologies to address various challenges in shale gas development and production. Specifically, it harnesses the power of Automated Machine Learning (AutoML) to construct an ensemble model to predict the estimated ultimate recovery (<em>EUR</em>) of shale gas wells. To demystify the “black-box” nature of the ensemble model, KernelSHAP, a kernel-based approach to compute Shapley values, is utilized for elucidating the influential factors that affect shale gas production at both global and local scales. Furthermore, a bi-objective optimization algorithm named NSGA-II is seamlessly incorporated to optimize hydraulic fracturing designs for production boost and cost control. This innovative framework addresses critical limitations often encountered in applying machine learning (ML) to shale gas production: the challenge of achieving sufficient model accuracy with limited samples, the multidisciplinary expertise required for developing robust ML models, and the need for interpretability in “black-box” models. Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques. The test accuracy of the ensemble ML model reached 83 % compared to a maximum of 72 % of single ML models. The contribution of each geological and engineering factor to the overall production was quantitatively evaluated. Fracturing design optimization raised <em>EUR</em> by 7 %–34 % under different production and cost tradeoff scenarios. The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.</div></div>\",\"PeriodicalId\":100469,\"journal\":{\"name\":\"Energy Geoscience\",\"volume\":\"6 1\",\"pages\":\"Article 100365\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666759224000805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666759224000805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究引入了一个全面的自动化框架,利用数据驱动的方法来解决页岩气开发和生产中的各种挑战。具体来说,它利用自动化机器学习(AutoML)的力量来构建一个集成模型来预测页岩气井的估计最终采收率(EUR)。为了揭开集成模型“黑盒子”的神秘面纱,KernelSHAP(一种基于核的计算Shapley值的方法)被用于阐明影响全球和局部规模页岩气产量的影响因素。此外,一种名为NSGA-II的双目标优化算法无缝集成,以优化水力压裂设计,以提高产量和控制成本。这个创新的框架解决了在将机器学习(ML)应用于页岩气生产时经常遇到的关键限制:在有限的样本中实现足够的模型准确性的挑战,开发强大的ML模型所需的多学科专业知识,以及对“黑盒”模型的可解释性的需求。四川盆地涪陵页岩气田实测数据验证了该框架在提高数据驱动技术精度和适用性方面的有效性。集成ML模型的测试精度达到83%,而单个ML模型的测试精度最高为72%。定量评价了各地质工程因素对整体产量的贡献。在不同的产量和成本权衡方案下,压裂设计优化可将EUR提高7% - 34%。该结果使领域专家能够在最少的数据科学专业知识的情况下,对页岩气生产进行更精确、客观的数据驱动分析和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field

Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field
This study introduces a comprehensive and automated framework that leverages data-driven methodologies to address various challenges in shale gas development and production. Specifically, it harnesses the power of Automated Machine Learning (AutoML) to construct an ensemble model to predict the estimated ultimate recovery (EUR) of shale gas wells. To demystify the “black-box” nature of the ensemble model, KernelSHAP, a kernel-based approach to compute Shapley values, is utilized for elucidating the influential factors that affect shale gas production at both global and local scales. Furthermore, a bi-objective optimization algorithm named NSGA-II is seamlessly incorporated to optimize hydraulic fracturing designs for production boost and cost control. This innovative framework addresses critical limitations often encountered in applying machine learning (ML) to shale gas production: the challenge of achieving sufficient model accuracy with limited samples, the multidisciplinary expertise required for developing robust ML models, and the need for interpretability in “black-box” models. Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques. The test accuracy of the ensemble ML model reached 83 % compared to a maximum of 72 % of single ML models. The contribution of each geological and engineering factor to the overall production was quantitatively evaluated. Fracturing design optimization raised EUR by 7 %–34 % under different production and cost tradeoff scenarios. The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信