考虑经济排放的孤立型太阳能-风能-柴油微电网容量规划

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sujoy Barua , Adel Merabet , Ahmed Al-Durra , Tarek El Fouly , Ehab F. El-Saadany
{"title":"考虑经济排放的孤立型太阳能-风能-柴油微电网容量规划","authors":"Sujoy Barua ,&nbsp;Adel Merabet ,&nbsp;Ahmed Al-Durra ,&nbsp;Tarek El Fouly ,&nbsp;Ehab F. El-Saadany","doi":"10.1016/j.egyai.2025.100469","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators, lower operational costs, and mitigate environmental pollution in remote areas. In this optimization, arithmetic optimization algorithm and golden jackal optimization are combined for achieving optimal capacity planning, considering economic and emission dispatch factors. This combination enhances the optimization by considering the balance in exploration and exploitation offered by the arithmetic operators of the arithmetic optimization algorithm and the dynamic adjustment by the adaptive search of the golden jackal optimization. Performance analysis is conducted by simulating and comparing three scenarios of only diesel generators, solar-wind-diesel and solar-wind with low number of diesel generators. The results demonstrate significant cost savings using the solar-wind-diesel microgrid under the proposed combined optimization compared to the arithmetic optimization algorithm and golden jackal algorithm and conventional metaheuristic optimization based on genetic algorithms.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100469"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal capacity planning with economic emission considerations in isolated solar-wind-diesel microgrid using combined arithmetic-golden jackal optimization\",\"authors\":\"Sujoy Barua ,&nbsp;Adel Merabet ,&nbsp;Ahmed Al-Durra ,&nbsp;Tarek El Fouly ,&nbsp;Ehab F. El-Saadany\",\"doi\":\"10.1016/j.egyai.2025.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators, lower operational costs, and mitigate environmental pollution in remote areas. In this optimization, arithmetic optimization algorithm and golden jackal optimization are combined for achieving optimal capacity planning, considering economic and emission dispatch factors. This combination enhances the optimization by considering the balance in exploration and exploitation offered by the arithmetic operators of the arithmetic optimization algorithm and the dynamic adjustment by the adaptive search of the golden jackal optimization. Performance analysis is conducted by simulating and comparing three scenarios of only diesel generators, solar-wind-diesel and solar-wind with low number of diesel generators. The results demonstrate significant cost savings using the solar-wind-diesel microgrid under the proposed combined optimization compared to the arithmetic optimization algorithm and golden jackal algorithm and conventional metaheuristic optimization based on genetic algorithms.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"19 \",\"pages\":\"Article 100469\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在优化一个孤立的太阳能-风能-柴油微电网,以减少对柴油发电机的依赖,降低运行成本,并减轻偏远地区的环境污染。在此优化中,考虑经济和排放调度因素,将算法优化算法与金豺狼优化算法相结合,实现最优容量规划。该组合考虑了算法优化算法的运算符提供的探索和开发的平衡性和金豺优化算法的自适应搜索的动态调整能力,增强了优化效果。通过对纯柴油发电机组、太阳能-风能-柴油发电机组和低柴油发电机组的太阳能-风能发电机组三种工况进行仿真比较,进行性能分析。结果表明,与算法优化算法、金豺算法和传统的基于遗传算法的元启发式优化算法相比,所提出的组合优化方法显著节省了太阳能-风能-柴油微电网的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal capacity planning with economic emission considerations in isolated solar-wind-diesel microgrid using combined arithmetic-golden jackal optimization

Optimal capacity planning with economic emission considerations in isolated solar-wind-diesel microgrid using combined arithmetic-golden jackal optimization
This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators, lower operational costs, and mitigate environmental pollution in remote areas. In this optimization, arithmetic optimization algorithm and golden jackal optimization are combined for achieving optimal capacity planning, considering economic and emission dispatch factors. This combination enhances the optimization by considering the balance in exploration and exploitation offered by the arithmetic operators of the arithmetic optimization algorithm and the dynamic adjustment by the adaptive search of the golden jackal optimization. Performance analysis is conducted by simulating and comparing three scenarios of only diesel generators, solar-wind-diesel and solar-wind with low number of diesel generators. The results demonstrate significant cost savings using the solar-wind-diesel microgrid under the proposed combined optimization compared to the arithmetic optimization algorithm and golden jackal algorithm and conventional metaheuristic optimization based on genetic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信