原子精确(AgPd)27纳米团簇硝酸电还原为NH3:通过配体诱导策略调节金属核

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang
{"title":"原子精确(AgPd)27纳米团簇硝酸电还原为NH3:通过配体诱导策略调节金属核","authors":"Lubing Qin ,&nbsp;Fang Sun ,&nbsp;Meiyin Li ,&nbsp;Hao Fan ,&nbsp;Likai Wang ,&nbsp;Qing Tang ,&nbsp;Chundong Wang ,&nbsp;Zhenghua Tang","doi":"10.3866/PKU.WHXB202403008","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical nitrate reduction reaction (eNO<sub>3</sub><sup>–</sup>RR) to synthesize NH<sub>3</sub> is a sustainable method to convert environmental contaminants into valuables. Pd based bimetallic nanocatalysts have demonstrated great promise as efficient catalysts, yet modulating the composition and configuration to improve the catalytic performance and achieve comprehensive mechanistic understanding remains challenging. Herein, by employing two ligands with different electron functional groups, we successfully prepared two atomically precise (AgPd)<sub>27</sub> bimetallic clusters of Ag<sub>18</sub>Pd<sub>9</sub>(C<sub>8</sub>H<sub>4</sub>F)<sub>24</sub> (Ag<sub>18</sub>Pd<sub>9</sub>) and Ag<sub>22</sub>Pd<sub>5</sub>(C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>)<sub>26</sub> (Ag<sub>22</sub>Pd<sub>5</sub>). The two clusters possess markedly different metal core composition and configuration, where Ag<sub>18</sub>Pd<sub>9</sub> has a sandwich metal core structure with 9 Pd atoms located in the middle layer and Ag<sub>22</sub>Pd<sub>5</sub> has a rod-shaped metal core structure composed of the M<sub>13</sub> configuration with 5 Pd atoms located at the center and vertices of the M<sub>13</sub> configuration. Unexpectedly, Ag<sub>22</sub>Pd<sub>5</sub> exhibited remarkably superior eNO<sup>−</sup><sub>3</sub>RR performance than Ag<sub>18</sub>Pd<sub>9</sub>. Specifically, the highest Faradaic efficiency of NH<sub>3</sub> (FE<sub>NH3</sub>) and its yield rate can reach 94.42 % and 1.41 mmol h<sup>−1</sup> mg<sup>−1</sup> at −0.6 V <em>vs</em>. RHE for Ag<sub>22</sub>Pd<sub>5</sub>, but the largest FE<sub>NH3</sub> and NH<sub>3</sub> yield rate is only 43.86 % and 0.41 mmol h<sup>−1</sup> mg<sup>−1</sup> at −0.5 V <em>vs</em>. RHE for Ag<sub>18</sub>Pd<sub>9</sub>. The <em>in situ</em> attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) test provides the experimental evidence of the reaction intermediates hence revealing the reaction pathway, also shows that Ag<sub>22</sub>Pd<sub>5</sub> has stronger capability for NO<sup>−</sup><sub>3</sub> adsorption and NH<sub>3</sub> desorption than that of Ag<sub>18</sub>Pd<sub>9</sub>. Theoretical calculations indicate that the de-ligated clusters can expose the available AgPd bimetallic sites, synergistically serving as effective active sites and the different configurations result in significantly different catalytic activities, where the active sites in Ag<sub>22</sub>Pd<sub>5</sub> are more favorable for NO<sup>−</sup><sub>3</sub> adsorption and NH<sub>3</sub> desorption to accelerate the catalytic process.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 1","pages":"Article 100008"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically precise (AgPd)27 nanoclusters for nitrate electroreduction to NH3: Modulating the metal core by a ligand induced strategy\",\"authors\":\"Lubing Qin ,&nbsp;Fang Sun ,&nbsp;Meiyin Li ,&nbsp;Hao Fan ,&nbsp;Likai Wang ,&nbsp;Qing Tang ,&nbsp;Chundong Wang ,&nbsp;Zhenghua Tang\",\"doi\":\"10.3866/PKU.WHXB202403008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical nitrate reduction reaction (eNO<sub>3</sub><sup>–</sup>RR) to synthesize NH<sub>3</sub> is a sustainable method to convert environmental contaminants into valuables. Pd based bimetallic nanocatalysts have demonstrated great promise as efficient catalysts, yet modulating the composition and configuration to improve the catalytic performance and achieve comprehensive mechanistic understanding remains challenging. Herein, by employing two ligands with different electron functional groups, we successfully prepared two atomically precise (AgPd)<sub>27</sub> bimetallic clusters of Ag<sub>18</sub>Pd<sub>9</sub>(C<sub>8</sub>H<sub>4</sub>F)<sub>24</sub> (Ag<sub>18</sub>Pd<sub>9</sub>) and Ag<sub>22</sub>Pd<sub>5</sub>(C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>)<sub>26</sub> (Ag<sub>22</sub>Pd<sub>5</sub>). The two clusters possess markedly different metal core composition and configuration, where Ag<sub>18</sub>Pd<sub>9</sub> has a sandwich metal core structure with 9 Pd atoms located in the middle layer and Ag<sub>22</sub>Pd<sub>5</sub> has a rod-shaped metal core structure composed of the M<sub>13</sub> configuration with 5 Pd atoms located at the center and vertices of the M<sub>13</sub> configuration. Unexpectedly, Ag<sub>22</sub>Pd<sub>5</sub> exhibited remarkably superior eNO<sup>−</sup><sub>3</sub>RR performance than Ag<sub>18</sub>Pd<sub>9</sub>. Specifically, the highest Faradaic efficiency of NH<sub>3</sub> (FE<sub>NH3</sub>) and its yield rate can reach 94.42 % and 1.41 mmol h<sup>−1</sup> mg<sup>−1</sup> at −0.6 V <em>vs</em>. RHE for Ag<sub>22</sub>Pd<sub>5</sub>, but the largest FE<sub>NH3</sub> and NH<sub>3</sub> yield rate is only 43.86 % and 0.41 mmol h<sup>−1</sup> mg<sup>−1</sup> at −0.5 V <em>vs</em>. RHE for Ag<sub>18</sub>Pd<sub>9</sub>. The <em>in situ</em> attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) test provides the experimental evidence of the reaction intermediates hence revealing the reaction pathway, also shows that Ag<sub>22</sub>Pd<sub>5</sub> has stronger capability for NO<sup>−</sup><sub>3</sub> adsorption and NH<sub>3</sub> desorption than that of Ag<sub>18</sub>Pd<sub>9</sub>. Theoretical calculations indicate that the de-ligated clusters can expose the available AgPd bimetallic sites, synergistically serving as effective active sites and the different configurations result in significantly different catalytic activities, where the active sites in Ag<sub>22</sub>Pd<sub>5</sub> are more favorable for NO<sup>−</sup><sub>3</sub> adsorption and NH<sub>3</sub> desorption to accelerate the catalytic process.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 1\",\"pages\":\"Article 100008\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824000080\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000080","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学硝酸还原反应(eNO3-RR)合成NH3是一种可持续的将环境污染物转化为贵重物品的方法。钯基双金属纳米催化剂作为高效催化剂已被证明具有巨大的前景,但调节其组成和结构以提高催化性能并实现全面的机理理解仍然具有挑战性。本文采用两种具有不同电子官能团的配体,成功制备了Ag18Pd9(C8H4F)24 (Ag18Pd9)和Ag22Pd5(C9H10O2)26 (Ag22Pd5)两个原子精密(AgPd)27双金属团簇。两团簇金属芯的组成和构型明显不同,其中Ag18Pd9为夹层金属芯结构,9个钯原子位于中间层;Ag22Pd5为棒状金属芯结构,由M13结构组成,5个钯原子位于M13结构的中心和顶点。出乎意料的是,Ag22Pd5表现出明显优于Ag18Pd9的eNO−3RR性能。其中,与RHE相比,Ag22Pd5在- 0.6 V条件下,NH3 (FENH3)的法拉第效率和产率最高可达94.42%和1.41 mmol h−1 mg−1,而Ag18Pd9在- 0.5 V条件下,FENH3和NH3的产率最高仅为43.86%和0.41 mmol h−1 mg−1。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)测试为反应中间体提供了实验证据,从而揭示了反应途径,也表明Ag22Pd5比Ag18Pd9具有更强的NO−3吸附和NH3解吸能力。理论计算表明,不同构型的Ag22Pd5的活性位点更有利于NO−3的吸附和NH3的脱附,从而加速催化过程,不同构型的Ag22Pd5的活性位点更有利于NO−3的吸附和NH3的脱附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomically precise (AgPd)27 nanoclusters for nitrate electroreduction to NH3: Modulating the metal core by a ligand induced strategy

Atomically precise (AgPd)27 nanoclusters for nitrate electroreduction to NH3: Modulating the metal core by a ligand induced strategy
Electrochemical nitrate reduction reaction (eNO3RR) to synthesize NH3 is a sustainable method to convert environmental contaminants into valuables. Pd based bimetallic nanocatalysts have demonstrated great promise as efficient catalysts, yet modulating the composition and configuration to improve the catalytic performance and achieve comprehensive mechanistic understanding remains challenging. Herein, by employing two ligands with different electron functional groups, we successfully prepared two atomically precise (AgPd)27 bimetallic clusters of Ag18Pd9(C8H4F)24 (Ag18Pd9) and Ag22Pd5(C9H10O2)26 (Ag22Pd5). The two clusters possess markedly different metal core composition and configuration, where Ag18Pd9 has a sandwich metal core structure with 9 Pd atoms located in the middle layer and Ag22Pd5 has a rod-shaped metal core structure composed of the M13 configuration with 5 Pd atoms located at the center and vertices of the M13 configuration. Unexpectedly, Ag22Pd5 exhibited remarkably superior eNO3RR performance than Ag18Pd9. Specifically, the highest Faradaic efficiency of NH3 (FENH3) and its yield rate can reach 94.42 % and 1.41 mmol h−1 mg−1 at −0.6 V vs. RHE for Ag22Pd5, but the largest FENH3 and NH3 yield rate is only 43.86 % and 0.41 mmol h−1 mg−1 at −0.5 V vs. RHE for Ag18Pd9. The in situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) test provides the experimental evidence of the reaction intermediates hence revealing the reaction pathway, also shows that Ag22Pd5 has stronger capability for NO3 adsorption and NH3 desorption than that of Ag18Pd9. Theoretical calculations indicate that the de-ligated clusters can expose the available AgPd bimetallic sites, synergistically serving as effective active sites and the different configurations result in significantly different catalytic activities, where the active sites in Ag22Pd5 are more favorable for NO3 adsorption and NH3 desorption to accelerate the catalytic process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信