二甲醚- 2-丁氧基乙醇和二甲醚-水- 2-丁氧基乙醇在(293.15 ~ 313.15)K下的泡点压力测量及VLE和VLE的预测

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Tomoya Tsuji , Masaki Okada , Aoi Enokido , Taka-aki Hoshina
{"title":"二甲醚- 2-丁氧基乙醇和二甲醚-水- 2-丁氧基乙醇在(293.15 ~ 313.15)K下的泡点压力测量及VLE和VLE的预测","authors":"Tomoya Tsuji ,&nbsp;Masaki Okada ,&nbsp;Aoi Enokido ,&nbsp;Taka-aki Hoshina","doi":"10.1016/j.fluid.2024.114320","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble point pressure was measured for a binary, dimethyl ether – 2-butoxyethanol, and a ternary, dimethyl ether – water – 2-butoxyethanol, by use of a static apparatus with a glass cell up to 837.0 kPa at (293.15 to 313.15) K. The mole ratios of water: 2-butoxyethanol were set to 50.0:50.0, 90.0: 10.0 and 95.0: 5.0 in the liquid phase for the ternaries. The phase behavior was visually observed through the glass cell at the pressure measurements, because the vapor-liquid-liquid equilibria (VLLE) have been reported for dimethyl ether -water. The binary showed the vapor-liquid equilibrium (VLE), which almost followed an ideal solution. 2-Butoxyethanol enhanced the miscibility range for dimethyl ether – water. Only the VLE was observed in the two ternaries with water: 2-butoxyethanol = 50.0: 50.0 and 90.0:10.0. The VLLE was partly observed in the ternary with water: 2-butoxyethanol = 95.0: 5.0. The NRTL equation was employed to correlate the VLE and the VLLE not only for dimethyl ether – 2-butoxyethanol but also for the other constituent binaries, dimethyl ether - water and water – 2-butoxyethanol. The NRTL equation provided good reproducibilities for dimethyl ether - 2-butoxyethanol with the average value of the absolute relative deviations (AARDs) of 0.90 % for the pressure. Using the parameters fitted with the constituent three binary data, the AARDs were 5.04 %, 6.80 % and 12.21 % for the pressure of dimethyl ether – water – 2-butoxyethanol with water: 2-butoxyethanol = 50.0: 50.0, 90.0: 10.0 and 95.0: 5.0, respectively. The experimental data and the prediction will contribute to design the sprays using water-based solvents for color paints, disinfectants, cleaning agents, cosmetics, pharmaceuticals and so on.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"592 ","pages":"Article 114320"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble point pressure measurement and prediction of VLE and VLLE for dimethyl ether - 2-butoxyethanol and dimethyl ether - water - 2-butoxyethanol at (293.15 to 313.15) K\",\"authors\":\"Tomoya Tsuji ,&nbsp;Masaki Okada ,&nbsp;Aoi Enokido ,&nbsp;Taka-aki Hoshina\",\"doi\":\"10.1016/j.fluid.2024.114320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bubble point pressure was measured for a binary, dimethyl ether – 2-butoxyethanol, and a ternary, dimethyl ether – water – 2-butoxyethanol, by use of a static apparatus with a glass cell up to 837.0 kPa at (293.15 to 313.15) K. The mole ratios of water: 2-butoxyethanol were set to 50.0:50.0, 90.0: 10.0 and 95.0: 5.0 in the liquid phase for the ternaries. The phase behavior was visually observed through the glass cell at the pressure measurements, because the vapor-liquid-liquid equilibria (VLLE) have been reported for dimethyl ether -water. The binary showed the vapor-liquid equilibrium (VLE), which almost followed an ideal solution. 2-Butoxyethanol enhanced the miscibility range for dimethyl ether – water. Only the VLE was observed in the two ternaries with water: 2-butoxyethanol = 50.0: 50.0 and 90.0:10.0. The VLLE was partly observed in the ternary with water: 2-butoxyethanol = 95.0: 5.0. The NRTL equation was employed to correlate the VLE and the VLLE not only for dimethyl ether – 2-butoxyethanol but also for the other constituent binaries, dimethyl ether - water and water – 2-butoxyethanol. The NRTL equation provided good reproducibilities for dimethyl ether - 2-butoxyethanol with the average value of the absolute relative deviations (AARDs) of 0.90 % for the pressure. Using the parameters fitted with the constituent three binary data, the AARDs were 5.04 %, 6.80 % and 12.21 % for the pressure of dimethyl ether – water – 2-butoxyethanol with water: 2-butoxyethanol = 50.0: 50.0, 90.0: 10.0 and 95.0: 5.0, respectively. The experimental data and the prediction will contribute to design the sprays using water-based solvents for color paints, disinfectants, cleaning agents, cosmetics, pharmaceuticals and so on.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"592 \",\"pages\":\"Article 114320\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002954\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002954","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用静态仪器测量二元二甲醚- 2-丁氧基乙醇和三元二甲醚-水- 2-丁氧基乙醇的气泡点压力,玻璃电池在(293.15至313.15)k下最高可达837.0 kPa。在液相中,水:2-丁氧基乙醇的摩尔比分别设置为50.0:50.0、90.0:10.0和95.0:5.0。由于二甲醚-水的汽-液-液平衡(VLLE)已被报道,因此在压力测量时,通过玻璃池可以直观地观察到相行为。二元体系呈现气液平衡(VLE),几乎符合理想溶液。2-丁氧基乙醇提高了二甲醚-水的混相范围。只有在水:2-丁氧基乙醇= 50.0:50.0和90.0:10.0的两种三元体系中观察到VLE。在水:2-丁氧基乙醇= 95.0:5.0的三元体系中,部分观察到VLLE。采用NRTL方程,不仅对二甲醚- 2-丁氧基乙醇,而且对二甲醚-水和水- 2-丁氧基乙醇的VLE和VLE进行了关联。NRTL方程对二甲醚- 2-丁氧基乙醇具有良好的重现性,在该压力下的绝对相对偏差(AARDs)平均值为0.90%。采用三元二元数据拟合参数,二甲醚-水- 2-丁氧基乙醇在水∶2-丁氧基乙醇= 50.0∶50.0、90.0∶10.0、95.0∶5.0时的压力下,AARDs分别为5.04%、6.80%和12.21%。实验数据和预测结果将有助于彩色涂料、消毒剂、清洗剂、化妆品、药品等行业的水基溶剂喷雾的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bubble point pressure measurement and prediction of VLE and VLLE for dimethyl ether - 2-butoxyethanol and dimethyl ether - water - 2-butoxyethanol at (293.15 to 313.15) K

Bubble point pressure measurement and prediction of VLE and VLLE for dimethyl ether - 2-butoxyethanol and dimethyl ether - water - 2-butoxyethanol at (293.15 to 313.15) K
Bubble point pressure was measured for a binary, dimethyl ether – 2-butoxyethanol, and a ternary, dimethyl ether – water – 2-butoxyethanol, by use of a static apparatus with a glass cell up to 837.0 kPa at (293.15 to 313.15) K. The mole ratios of water: 2-butoxyethanol were set to 50.0:50.0, 90.0: 10.0 and 95.0: 5.0 in the liquid phase for the ternaries. The phase behavior was visually observed through the glass cell at the pressure measurements, because the vapor-liquid-liquid equilibria (VLLE) have been reported for dimethyl ether -water. The binary showed the vapor-liquid equilibrium (VLE), which almost followed an ideal solution. 2-Butoxyethanol enhanced the miscibility range for dimethyl ether – water. Only the VLE was observed in the two ternaries with water: 2-butoxyethanol = 50.0: 50.0 and 90.0:10.0. The VLLE was partly observed in the ternary with water: 2-butoxyethanol = 95.0: 5.0. The NRTL equation was employed to correlate the VLE and the VLLE not only for dimethyl ether – 2-butoxyethanol but also for the other constituent binaries, dimethyl ether - water and water – 2-butoxyethanol. The NRTL equation provided good reproducibilities for dimethyl ether - 2-butoxyethanol with the average value of the absolute relative deviations (AARDs) of 0.90 % for the pressure. Using the parameters fitted with the constituent three binary data, the AARDs were 5.04 %, 6.80 % and 12.21 % for the pressure of dimethyl ether – water – 2-butoxyethanol with water: 2-butoxyethanol = 50.0: 50.0, 90.0: 10.0 and 95.0: 5.0, respectively. The experimental data and the prediction will contribute to design the sprays using water-based solvents for color paints, disinfectants, cleaning agents, cosmetics, pharmaceuticals and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信