在径向流动和模具几何形状的影响下,挤出物膨胀和缺陷

IF 2.7 2区 工程技术 Q2 MECHANICS
Hala Krir, Abdelhak Ayadi
{"title":"在径向流动和模具几何形状的影响下,挤出物膨胀和缺陷","authors":"Hala Krir,&nbsp;Abdelhak Ayadi","doi":"10.1016/j.jnnfm.2024.105381","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper aims to investigate the phenomenon of extrudate swells of polydimethylsiloxane (PDMS) during extrusion. This study contributes to understanding how radial flow, and in particular gap width, influences the initiation and growth of linear PDMS extruded swelling. To accomplish this, we consider implementing a capillary rheometer that imposes a radial flow upstream of the extrusion die. Images from the experiment demonstrate that the die swell seems more pronounced for both long and short dies with a high radial flow gap than it does for small gaps. In addition, we notice that, for a given gap, an increase in the length-to-diameter ratio reduces the extrudate swell. The findings explore the interplay between the elasticity of PDMS, the energy stored during the flow, and the memory effect on the final diameter of the extruded material.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"336 ","pages":"Article 105381"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrudate swell and defects under the effect of radial flow and die geometry\",\"authors\":\"Hala Krir,&nbsp;Abdelhak Ayadi\",\"doi\":\"10.1016/j.jnnfm.2024.105381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present paper aims to investigate the phenomenon of extrudate swells of polydimethylsiloxane (PDMS) during extrusion. This study contributes to understanding how radial flow, and in particular gap width, influences the initiation and growth of linear PDMS extruded swelling. To accomplish this, we consider implementing a capillary rheometer that imposes a radial flow upstream of the extrusion die. Images from the experiment demonstrate that the die swell seems more pronounced for both long and short dies with a high radial flow gap than it does for small gaps. In addition, we notice that, for a given gap, an increase in the length-to-diameter ratio reduces the extrudate swell. The findings explore the interplay between the elasticity of PDMS, the energy stored during the flow, and the memory effect on the final diameter of the extruded material.</div></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"336 \",\"pages\":\"Article 105381\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025724001976\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001976","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了聚二甲基硅氧烷(PDMS)在挤压过程中的膨胀现象。该研究有助于理解径向流动,特别是间隙宽度如何影响线性PDMS挤压膨胀的发生和发展。为了实现这一点,我们考虑实施毛细管流变仪,施加径向流的上游挤压模具。实验图像表明,与小间隙相比,具有高径向流动间隙的长模具和短模具的模具膨胀似乎更为明显。此外,我们注意到,对于给定的间隙,长径比的增加减少了挤出物的膨胀。研究结果探讨了PDMS的弹性、流动过程中储存的能量和记忆效应对挤压材料最终直径的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrudate swell and defects under the effect of radial flow and die geometry
The present paper aims to investigate the phenomenon of extrudate swells of polydimethylsiloxane (PDMS) during extrusion. This study contributes to understanding how radial flow, and in particular gap width, influences the initiation and growth of linear PDMS extruded swelling. To accomplish this, we consider implementing a capillary rheometer that imposes a radial flow upstream of the extrusion die. Images from the experiment demonstrate that the die swell seems more pronounced for both long and short dies with a high radial flow gap than it does for small gaps. In addition, we notice that, for a given gap, an increase in the length-to-diameter ratio reduces the extrudate swell. The findings explore the interplay between the elasticity of PDMS, the energy stored during the flow, and the memory effect on the final diameter of the extruded material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信