研究KTN单晶铁电畴壁热调制的机器学习加速分子动力学计算

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shun Li , Lantao Fang , Tao Liu , Xuping Wang , Bing Liu , Yuanyuan Zhang , Xianshun Lv , Lei Wei
{"title":"研究KTN单晶铁电畴壁热调制的机器学习加速分子动力学计算","authors":"Shun Li ,&nbsp;Lantao Fang ,&nbsp;Tao Liu ,&nbsp;Xuping Wang ,&nbsp;Bing Liu ,&nbsp;Yuanyuan Zhang ,&nbsp;Xianshun Lv ,&nbsp;Lei Wei","doi":"10.1016/j.commatsci.2025.113674","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectric perovskite materials, containing ferroelectric domain configurations, are promising thermal switching candidates in thermal management due to their fast response and efficient heat flow control. However, most of ferroelectric materials possess fixed or narrow Curie temperature range. In present study, the thermal-switching characteristics of ferroelectric potassium tantalate niobate (KTN) crystals, in which the Curie temperature can be adjusted by Ta/Nb ratio, are investigated by Machine Learning-Accelerated Molecular Dynamics calculations. Results show that temperature is an effective way to modulate thermal transport behavior. For 180°- and 90° DW, maximum thermal switching ratio are obtained at 300 K, with 1.80 and 1.89, respectively. Further modulation of thermal by the density of DWs strengthen the thermal switching effect. After introducing nine DWs in our calculation model, thermal switch ratio can be modulated to 2.19 and 2.29 for 180°- and 90° DWs configurations, respectively. Phonon anharmonicity investigation demonstrates that the decrease of phonon relaxation time of low frequency phonons (0–15 THz) are responsible for the difference of thermal conductivity between mono- and multidomain walls configuration. Large thermal switching ratio and flexible regulation of Curie temperature provide ferroelectric KTN crystal a broad application prospect in the field of intelligent thermal management.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113674"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-accelerated molecular dynamics calculations for investigating the thermal modulation by ferroelectric domain wall in KTN single crystals\",\"authors\":\"Shun Li ,&nbsp;Lantao Fang ,&nbsp;Tao Liu ,&nbsp;Xuping Wang ,&nbsp;Bing Liu ,&nbsp;Yuanyuan Zhang ,&nbsp;Xianshun Lv ,&nbsp;Lei Wei\",\"doi\":\"10.1016/j.commatsci.2025.113674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferroelectric perovskite materials, containing ferroelectric domain configurations, are promising thermal switching candidates in thermal management due to their fast response and efficient heat flow control. However, most of ferroelectric materials possess fixed or narrow Curie temperature range. In present study, the thermal-switching characteristics of ferroelectric potassium tantalate niobate (KTN) crystals, in which the Curie temperature can be adjusted by Ta/Nb ratio, are investigated by Machine Learning-Accelerated Molecular Dynamics calculations. Results show that temperature is an effective way to modulate thermal transport behavior. For 180°- and 90° DW, maximum thermal switching ratio are obtained at 300 K, with 1.80 and 1.89, respectively. Further modulation of thermal by the density of DWs strengthen the thermal switching effect. After introducing nine DWs in our calculation model, thermal switch ratio can be modulated to 2.19 and 2.29 for 180°- and 90° DWs configurations, respectively. Phonon anharmonicity investigation demonstrates that the decrease of phonon relaxation time of low frequency phonons (0–15 THz) are responsible for the difference of thermal conductivity between mono- and multidomain walls configuration. Large thermal switching ratio and flexible regulation of Curie temperature provide ferroelectric KTN crystal a broad application prospect in the field of intelligent thermal management.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"249 \",\"pages\":\"Article 113674\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625000175\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000175","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有铁电畴结构的铁电钙钛矿材料,由于其快速响应和有效的热流控制,在热管理中是很有前途的热开关候选材料。然而,大多数铁电材料具有固定的或狭窄的居里温度范围。本文采用机器学习加速分子动力学方法,研究了可通过Ta/Nb比值调节居里温度的钽酸铌酸钾(KTN)铁电晶体的热开关特性。结果表明,温度是调节热输运行为的有效途径。对于180°DW和90°DW,在300 K时获得最大的热开关比,分别为1.80和1.89。通过DWs的密度进一步调制热,增强了热开关效应。在我们的计算模型中引入9个DWs后,180°DWs和90°DWs配置的热开关比分别可调为2.19和2.29。声子非调和性研究表明,低频声子(0 ~ 15 THz)弛豫时间的减少是单畴和多畴壁结构导热系数差异的主要原因。大的热开关比和居里温度的灵活调节为铁电KTN晶体在智能热管理领域提供了广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-accelerated molecular dynamics calculations for investigating the thermal modulation by ferroelectric domain wall in KTN single crystals

Machine learning-accelerated molecular dynamics calculations for investigating the thermal modulation by ferroelectric domain wall in KTN single crystals
Ferroelectric perovskite materials, containing ferroelectric domain configurations, are promising thermal switching candidates in thermal management due to their fast response and efficient heat flow control. However, most of ferroelectric materials possess fixed or narrow Curie temperature range. In present study, the thermal-switching characteristics of ferroelectric potassium tantalate niobate (KTN) crystals, in which the Curie temperature can be adjusted by Ta/Nb ratio, are investigated by Machine Learning-Accelerated Molecular Dynamics calculations. Results show that temperature is an effective way to modulate thermal transport behavior. For 180°- and 90° DW, maximum thermal switching ratio are obtained at 300 K, with 1.80 and 1.89, respectively. Further modulation of thermal by the density of DWs strengthen the thermal switching effect. After introducing nine DWs in our calculation model, thermal switch ratio can be modulated to 2.19 and 2.29 for 180°- and 90° DWs configurations, respectively. Phonon anharmonicity investigation demonstrates that the decrease of phonon relaxation time of low frequency phonons (0–15 THz) are responsible for the difference of thermal conductivity between mono- and multidomain walls configuration. Large thermal switching ratio and flexible regulation of Curie temperature provide ferroelectric KTN crystal a broad application prospect in the field of intelligent thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信