利用机器学习原子间势的分子动力学模拟h-BN结晶

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu-Qi Liu , Hai-Kuan Dong , Ying Ren , Wei-Gang Zhang , Wei Chen
{"title":"利用机器学习原子间势的分子动力学模拟h-BN结晶","authors":"Yu-Qi Liu ,&nbsp;Hai-Kuan Dong ,&nbsp;Ying Ren ,&nbsp;Wei-Gang Zhang ,&nbsp;Wei Chen","doi":"10.1016/j.commatsci.2024.113621","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs machine learning-driven molecular dynamics simulations to investigate the structure and physical properties of hexagonal boron nitride (h-BN) across a wide temperature range. A novel machine learning potential, neuroevolution potential, trained using first-principles calculations, is utilized for high-accuracy and efficient atomic-level simulations. Results reveal that slower cooling rates enhance the crystallinity and mechanical properties of h-BN. The unique temperature dependence of the elastic modulus and anisotropic thermal conductivity of h-BN are also elucidated. Furthermore, a predictive model is developed to estimate the tensile strength of low-density porous h-BN, providing a theoretical foundation for its potential applications in various fields such as electronics, aerospace, and energy storage.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113621"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization of h-BN by molecular dynamics simulation using a machine learning interatomic potential\",\"authors\":\"Yu-Qi Liu ,&nbsp;Hai-Kuan Dong ,&nbsp;Ying Ren ,&nbsp;Wei-Gang Zhang ,&nbsp;Wei Chen\",\"doi\":\"10.1016/j.commatsci.2024.113621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employs machine learning-driven molecular dynamics simulations to investigate the structure and physical properties of hexagonal boron nitride (h-BN) across a wide temperature range. A novel machine learning potential, neuroevolution potential, trained using first-principles calculations, is utilized for high-accuracy and efficient atomic-level simulations. Results reveal that slower cooling rates enhance the crystallinity and mechanical properties of h-BN. The unique temperature dependence of the elastic modulus and anisotropic thermal conductivity of h-BN are also elucidated. Furthermore, a predictive model is developed to estimate the tensile strength of low-density porous h-BN, providing a theoretical foundation for its potential applications in various fields such as electronics, aerospace, and energy storage.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"249 \",\"pages\":\"Article 113621\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624008425\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624008425","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用机器学习驱动的分子动力学模拟来研究六方氮化硼(h-BN)在宽温度范围内的结构和物理性质。一种新的机器学习潜力,神经进化潜力,使用第一性原理计算训练,用于高精度和高效的原子级模拟。结果表明,较慢的冷却速度提高了h-BN的结晶度和力学性能。同时还阐明了h-BN的弹性模量和各向异性导热系数的独特温度依赖性。建立了低密度多孔h-BN的抗拉强度预测模型,为其在电子、航天、储能等领域的潜在应用奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallization of h-BN by molecular dynamics simulation using a machine learning interatomic potential

Crystallization of h-BN by molecular dynamics simulation using a machine learning interatomic potential
This study employs machine learning-driven molecular dynamics simulations to investigate the structure and physical properties of hexagonal boron nitride (h-BN) across a wide temperature range. A novel machine learning potential, neuroevolution potential, trained using first-principles calculations, is utilized for high-accuracy and efficient atomic-level simulations. Results reveal that slower cooling rates enhance the crystallinity and mechanical properties of h-BN. The unique temperature dependence of the elastic modulus and anisotropic thermal conductivity of h-BN are also elucidated. Furthermore, a predictive model is developed to estimate the tensile strength of low-density porous h-BN, providing a theoretical foundation for its potential applications in various fields such as electronics, aerospace, and energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信