派生报价栈上的位移辛结构II -作为dg流形的派生报价格式

IF 1.5 1区 数学 Q1 MATHEMATICS
Dennis Borisov , Ludmil Katzarkov , Artan Sheshmani
{"title":"派生报价栈上的位移辛结构II -作为dg流形的派生报价格式","authors":"Dennis Borisov ,&nbsp;Ludmil Katzarkov ,&nbsp;Artan Sheshmani","doi":"10.1016/j.aim.2024.110092","DOIUrl":null,"url":null,"abstract":"<div><div>It is proved that derived <span><math><mi>Q</mi><mi>u</mi><mi>o</mi><mi>t</mi></math></span>-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part of a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi–Yau manifolds. The first part related dg manifolds to derived schemes as defined by Toën and Vezzosi.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110092"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted symplectic structures on derived Quot-stacks II – derived Quot-schemes as dg manifolds\",\"authors\":\"Dennis Borisov ,&nbsp;Ludmil Katzarkov ,&nbsp;Artan Sheshmani\",\"doi\":\"10.1016/j.aim.2024.110092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is proved that derived <span><math><mi>Q</mi><mi>u</mi><mi>o</mi><mi>t</mi></math></span>-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part of a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi–Yau manifolds. The first part related dg manifolds to derived schemes as defined by Toën and Vezzosi.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"462 \",\"pages\":\"Article 110092\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082400608X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400608X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了由Ciocan-Fontanine和Kapranov定义的派生的quote -格式是用有限型dg流形表示的。本文是研究Calabi-Yau流形上相干束模空间上的位移辛结构的第二部分。第一部分将dg流形与Toën和Vezzosi定义的派生格式联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifted symplectic structures on derived Quot-stacks II – derived Quot-schemes as dg manifolds
It is proved that derived Quot-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part of a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi–Yau manifolds. The first part related dg manifolds to derived schemes as defined by Toën and Vezzosi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信