利玛窦极限空间的新奇异例子

IF 1.5 1区 数学 Q1 MATHEMATICS
Xilun Li , Shengxuan Zhou
{"title":"利玛窦极限空间的新奇异例子","authors":"Xilun Li ,&nbsp;Shengxuan Zhou","doi":"10.1016/j.aim.2024.110098","DOIUrl":null,"url":null,"abstract":"<div><div>For any integers <span><math><mi>m</mi><mo>⩾</mo><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>, we construct a Ricci limit space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> such that for a fixed point, some tangent cones are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> and some are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. This is an improvement of Menguy's example <span><span>[3]</span></span>. Moreover, we show that for any finite collection of closed Riemannian manifolds <span><math><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msubsup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>⩾</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>⩾</mo><mn>1</mn></math></span>, there exists a collapsed Ricci limit space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> such that each Riemannian cone <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is a tangent cone of <em>X</em> at <em>x</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110098"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New exotic examples of Ricci limit spaces\",\"authors\":\"Xilun Li ,&nbsp;Shengxuan Zhou\",\"doi\":\"10.1016/j.aim.2024.110098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any integers <span><math><mi>m</mi><mo>⩾</mo><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>, we construct a Ricci limit space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> such that for a fixed point, some tangent cones are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> and some are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. This is an improvement of Menguy's example <span><span>[3]</span></span>. Moreover, we show that for any finite collection of closed Riemannian manifolds <span><math><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msubsup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>⩾</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>⩾</mo><mn>1</mn></math></span>, there exists a collapsed Ricci limit space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> such that each Riemannian cone <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is a tangent cone of <em>X</em> at <em>x</em>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"462 \",\"pages\":\"Article 110098\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824006145\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824006145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任何整数m或n或3,我们构建里奇极限空间Xm,n使得对于一个固定点,一些切锥是Rm,一些是Rn。这是对Menguy的例子b[3]的改进。此外,我们表明,对于具有Ricgi大于或等于(ni−1)大于或等于1的任何封闭黎曼流形(Mini,gi)的有限集合,存在一个坍缩的Ricci极限空间(X,d, X),使得每个黎曼锥C(Mi,gi)是X在X处的切锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New exotic examples of Ricci limit spaces
For any integers mn3, we construct a Ricci limit space Xm,n such that for a fixed point, some tangent cones are Rm and some are Rn. This is an improvement of Menguy's example [3]. Moreover, we show that for any finite collection of closed Riemannian manifolds (Mini,gi) with Ricgi(ni1)1, there exists a collapsed Ricci limit space (X,d,x) such that each Riemannian cone C(Mi,gi) is a tangent cone of X at x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信