斜正态模型的交叉验证估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Jian Zhang , Tong Wang
{"title":"斜正态模型的交叉验证估计","authors":"Jian Zhang ,&nbsp;Tong Wang","doi":"10.1016/j.jspi.2025.106271","DOIUrl":null,"url":null,"abstract":"<div><div>Skew normal model suffers from inferential drawbacks, namely singular Fisher information when it is close to symmetry and diverging of maximum likelihood estimation. This causes a large variation of the conventional maximum likelihood estimate. To address the above drawbacks, Azzalini and Arellano-Valle (2013) introduced maximum penalised likelihood estimation (MPLE) by subtracting a penalty function from the log-likelihood function with a pre-specified penalty coefficient. Here, we propose a cross-validated MPLE to improve its performance when the underlying model is close to symmetry. We develop a theory for MPLE, where an asymptotic rate for the cross-validated penalty coefficient is derived. We further show that the proposed cross-validated MPLE is asymptotically efficient under certain conditions. In simulation studies and a real data application, we demonstrate that the proposed estimator can outperform the conventional MPLE when the model is close to symmetry.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"238 ","pages":"Article 106271"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cross-validated estimation of skew normal model\",\"authors\":\"Jian Zhang ,&nbsp;Tong Wang\",\"doi\":\"10.1016/j.jspi.2025.106271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skew normal model suffers from inferential drawbacks, namely singular Fisher information when it is close to symmetry and diverging of maximum likelihood estimation. This causes a large variation of the conventional maximum likelihood estimate. To address the above drawbacks, Azzalini and Arellano-Valle (2013) introduced maximum penalised likelihood estimation (MPLE) by subtracting a penalty function from the log-likelihood function with a pre-specified penalty coefficient. Here, we propose a cross-validated MPLE to improve its performance when the underlying model is close to symmetry. We develop a theory for MPLE, where an asymptotic rate for the cross-validated penalty coefficient is derived. We further show that the proposed cross-validated MPLE is asymptotically efficient under certain conditions. In simulation studies and a real data application, we demonstrate that the proposed estimator can outperform the conventional MPLE when the model is close to symmetry.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"238 \",\"pages\":\"Article 106271\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000096\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000096","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

偏正态模型在接近对称和极大似然估计发散时存在奇异费雪信息的推理缺陷。这导致传统的最大似然估计有很大的变化。为了解决上述缺点,Azzalini和Arellano-Valle(2013)引入了最大惩罚似然估计(MPLE),通过从具有预先指定的惩罚系数的对数似然函数中减去惩罚函数。在这里,我们提出了一种交叉验证的MPLE,以提高其在底层模型接近对称时的性能。我们发展了一个MPLE理论,其中得到了交叉验证惩罚系数的渐近率。我们进一步证明了所提出的交叉验证MPLE在一定条件下是渐近有效的。在仿真研究和实际数据应用中,我们证明了该估计器在模型接近对称时优于传统的MPLE估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On cross-validated estimation of skew normal model
Skew normal model suffers from inferential drawbacks, namely singular Fisher information when it is close to symmetry and diverging of maximum likelihood estimation. This causes a large variation of the conventional maximum likelihood estimate. To address the above drawbacks, Azzalini and Arellano-Valle (2013) introduced maximum penalised likelihood estimation (MPLE) by subtracting a penalty function from the log-likelihood function with a pre-specified penalty coefficient. Here, we propose a cross-validated MPLE to improve its performance when the underlying model is close to symmetry. We develop a theory for MPLE, where an asymptotic rate for the cross-validated penalty coefficient is derived. We further show that the proposed cross-validated MPLE is asymptotically efficient under certain conditions. In simulation studies and a real data application, we demonstrate that the proposed estimator can outperform the conventional MPLE when the model is close to symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信