退化粘性Cahn-Hilliard方程的非负弱解

IF 1.4 Q2 MATHEMATICS, APPLIED
Toai Luong
{"title":"退化粘性Cahn-Hilliard方程的非负弱解","authors":"Toai Luong","doi":"10.1016/j.rinam.2024.100527","DOIUrl":null,"url":null,"abstract":"<div><div>The Cahn–Hilliard equation is a widely used model for describing phase separation processes in a binary mixture. In this paper, we investigate the viscous Cahn–Hilliard equation with a degenerate, phase-dependent mobility. We define the concept of a weak solution and establish the existence of such a solution by taking limits of solutions to the viscous Cahn–Hilliard equation with positive mobility. Additionally, assuming that the initial data is positive, we demonstrate that the weak solution remains nonnegative and is not identically zero. Finally, we prove that the weak solution satisfies an energy dissipation inequality.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100527"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegative weak solution to the degenerate viscous Cahn–Hilliard equation\",\"authors\":\"Toai Luong\",\"doi\":\"10.1016/j.rinam.2024.100527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cahn–Hilliard equation is a widely used model for describing phase separation processes in a binary mixture. In this paper, we investigate the viscous Cahn–Hilliard equation with a degenerate, phase-dependent mobility. We define the concept of a weak solution and establish the existence of such a solution by taking limits of solutions to the viscous Cahn–Hilliard equation with positive mobility. Additionally, assuming that the initial data is positive, we demonstrate that the weak solution remains nonnegative and is not identically zero. Finally, we prove that the weak solution satisfies an energy dissipation inequality.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100527\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Cahn-Hilliard方程是描述二元混合物中相分离过程的一个广泛使用的模型。本文研究了具有简并相相关迁移率的粘性Cahn-Hilliard方程。我们通过取具有正迁移率的粘性Cahn-Hilliard方程的解的极限,定义了弱解的概念,并建立了弱解的存在性。此外,假设初始数据为正,我们证明了弱解保持非负且不等于零。最后,我们证明了弱解满足一个能量耗散不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegative weak solution to the degenerate viscous Cahn–Hilliard equation
The Cahn–Hilliard equation is a widely used model for describing phase separation processes in a binary mixture. In this paper, we investigate the viscous Cahn–Hilliard equation with a degenerate, phase-dependent mobility. We define the concept of a weak solution and establish the existence of such a solution by taking limits of solutions to the viscous Cahn–Hilliard equation with positive mobility. Additionally, assuming that the initial data is positive, we demonstrate that the weak solution remains nonnegative and is not identically zero. Finally, we prove that the weak solution satisfies an energy dissipation inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信