用最优正交公式求解阿贝尔积分方程的数值解

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdullo Hayotov , Samandar Babaev , Bobomurod Boytillayev
{"title":"用最优正交公式求解阿贝尔积分方程的数值解","authors":"Abdullo Hayotov ,&nbsp;Samandar Babaev ,&nbsp;Bobomurod Boytillayev","doi":"10.1016/j.rinam.2025.100542","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel and efficient approach utilizing optimal quadrature formulas is introduced to derive approximate solutions for generalizing Abel’s integral equations. The method, characterized by high accuracy and simplicity, involves constructing optimal quadrature formulas in the sense of Sard and providing error estimates within the Hilbert space of differentiable functions. The squared norm of the error functional for the quadrature formula in the space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is computed. To minimize this error, a system of linear equations regarding the formula’s coefficients is derived, leading to a unique solution. Then the explicit expressions for these optimal coefficients are obtained. The validity of the approach is demonstrated by solving several integral equations, with approximation errors presented in the corresponding tables.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100542"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The numerical solution of an Abel integral equation by the optimal quadrature formula\",\"authors\":\"Abdullo Hayotov ,&nbsp;Samandar Babaev ,&nbsp;Bobomurod Boytillayev\",\"doi\":\"10.1016/j.rinam.2025.100542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a novel and efficient approach utilizing optimal quadrature formulas is introduced to derive approximate solutions for generalizing Abel’s integral equations. The method, characterized by high accuracy and simplicity, involves constructing optimal quadrature formulas in the sense of Sard and providing error estimates within the Hilbert space of differentiable functions. The squared norm of the error functional for the quadrature formula in the space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is computed. To minimize this error, a system of linear equations regarding the formula’s coefficients is derived, leading to a unique solution. Then the explicit expressions for these optimal coefficients are obtained. The validity of the approach is demonstrated by solving several integral equations, with approximation errors presented in the corresponding tables.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100542\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用最优正交公式求解阿贝尔积分方程近似解的新方法。该方法在Sard意义上构造最优正交公式,并在Hilbert空间内给出可微函数的误差估计,具有精度高、简单等特点。计算空间W2(2.1)(0,t)中正交公式的误差泛函的平方范数。为了使这个误差最小化,我们推导出一个关于公式系数的线性方程组,从而得出一个唯一的解。然后得到了这些最优系数的显式表达式。通过求解几个积分方程证明了该方法的有效性,并在相应的表中给出了近似误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The numerical solution of an Abel integral equation by the optimal quadrature formula
In this study, a novel and efficient approach utilizing optimal quadrature formulas is introduced to derive approximate solutions for generalizing Abel’s integral equations. The method, characterized by high accuracy and simplicity, involves constructing optimal quadrature formulas in the sense of Sard and providing error estimates within the Hilbert space of differentiable functions. The squared norm of the error functional for the quadrature formula in the space W2(2.1)(0,t) is computed. To minimize this error, a system of linear equations regarding the formula’s coefficients is derived, leading to a unique solution. Then the explicit expressions for these optimal coefficients are obtained. The validity of the approach is demonstrated by solving several integral equations, with approximation errors presented in the corresponding tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信