{"title":"边界上有集中势项的相场模型","authors":"Ángela Jiménez-Casas","doi":"10.1016/j.rinam.2024.100523","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of <span><math><mi>Γ</mi></math></span>, the boundary of domain. The neighborhood shrinks to <span><math><mi>Γ</mi></math></span> as a parameter <span><math><mi>ϵ</mi></math></span> approaches zero.</div><div>We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on <span><math><mi>Γ</mi></math></span>.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100523"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-field model with concentrating-potential terms on the boundary\",\"authors\":\"Ángela Jiménez-Casas\",\"doi\":\"10.1016/j.rinam.2024.100523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of <span><math><mi>Γ</mi></math></span>, the boundary of domain. The neighborhood shrinks to <span><math><mi>Γ</mi></math></span> as a parameter <span><math><mi>ϵ</mi></math></span> approaches zero.</div><div>We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on <span><math><mi>Γ</mi></math></span>.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100523\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Phase-field model with concentrating-potential terms on the boundary
In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of , the boundary of domain. The neighborhood shrinks to as a parameter approaches zero.
We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on .