Cahn-Hilliard-Hele-Shaw系统的完全解耦SAV傅立叶谱格式

IF 1.4 Q2 MATHEMATICS, APPLIED
Linhui Zhang , Hongen Jia , Hongbin Wang
{"title":"Cahn-Hilliard-Hele-Shaw系统的完全解耦SAV傅立叶谱格式","authors":"Linhui Zhang ,&nbsp;Hongen Jia ,&nbsp;Hongbin Wang","doi":"10.1016/j.rinam.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100534"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully decoupled SAV Fourier-spectral scheme for the Cahn–Hilliard–Hele–Shaw system\",\"authors\":\"Linhui Zhang ,&nbsp;Hongen Jia ,&nbsp;Hongbin Wang\",\"doi\":\"10.1016/j.rinam.2024.100534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100534\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424001043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文基于傅里叶谱方法构造了Cahn-Hilliard-Hele-Shaw系统的一阶和二阶完全离散格式。对于时间离散化,我们结合了两种有效的方法,包括标量辅助变量法(SAV)线性化非线性电位和零能量贡献法(ZEC)解耦非线性耦合。这些格式是线性的,完全解耦的,无条件能量稳定的,只需要在每个时间步长解一个常系数椭圆方程序列。给出了一阶格式误差分析的严格证明。最后,通过数值算例验证了该方法的稳定性、准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully decoupled SAV Fourier-spectral scheme for the Cahn–Hilliard–Hele–Shaw system
In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信