在放射学工作流程中实现人工智能算法:挑战和考虑

Panagiotis Korfiatis PhD , Timothy L. Kline PhD , Holly M. Meyer MS , Sana Khalid MS , Timothy Leiner MD , Brenna T. Loufek MS , Daniel Blezek PhD , David E. Vidal JD , Robert P. Hartman MD , Lori J. Joppa MBA , Andrew D. Missert PhD , Theodora A. Potretzke MD , Jerome P. Taubel , Jason A. Tjelta BS , Matthew R. Callstrom MD , Eric E. Williamson MD
{"title":"在放射学工作流程中实现人工智能算法:挑战和考虑","authors":"Panagiotis Korfiatis PhD ,&nbsp;Timothy L. Kline PhD ,&nbsp;Holly M. Meyer MS ,&nbsp;Sana Khalid MS ,&nbsp;Timothy Leiner MD ,&nbsp;Brenna T. Loufek MS ,&nbsp;Daniel Blezek PhD ,&nbsp;David E. Vidal JD ,&nbsp;Robert P. Hartman MD ,&nbsp;Lori J. Joppa MBA ,&nbsp;Andrew D. Missert PhD ,&nbsp;Theodora A. Potretzke MD ,&nbsp;Jerome P. Taubel ,&nbsp;Jason A. Tjelta BS ,&nbsp;Matthew R. Callstrom MD ,&nbsp;Eric E. Williamson MD","doi":"10.1016/j.mcpdig.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 1","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations\",\"authors\":\"Panagiotis Korfiatis PhD ,&nbsp;Timothy L. Kline PhD ,&nbsp;Holly M. Meyer MS ,&nbsp;Sana Khalid MS ,&nbsp;Timothy Leiner MD ,&nbsp;Brenna T. Loufek MS ,&nbsp;Daniel Blezek PhD ,&nbsp;David E. Vidal JD ,&nbsp;Robert P. Hartman MD ,&nbsp;Lori J. Joppa MBA ,&nbsp;Andrew D. Missert PhD ,&nbsp;Theodora A. Potretzke MD ,&nbsp;Jerome P. Taubel ,&nbsp;Jason A. Tjelta BS ,&nbsp;Matthew R. Callstrom MD ,&nbsp;Eric E. Williamson MD\",\"doi\":\"10.1016/j.mcpdig.2024.100188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.</div></div>\",\"PeriodicalId\":74127,\"journal\":{\"name\":\"Mayo Clinic Proceedings. Digital health\",\"volume\":\"3 1\",\"pages\":\"Article 100188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mayo Clinic Proceedings. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949761224001214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将支持人工智能的算法集成到放射学工作流程中,带来了一系列复杂的挑战,涉及操作、技术、临床和监管领域。成功地克服这些障碍需要多方面的方法,包括战略规划、教育倡议和仔细考虑对放射科医生工作量的实际影响。机构必须清楚地了解人工智能工具的潜在优势和局限性,才能应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations
Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信