基于包装特征选择算法的埃塞俄比亚东Gojjam道路交通事故决定因素识别

Mequanent Degu Belete , Girma Kassa Alitasb , Samuel Nibretu , Mezigebu Enawugew Dessie
{"title":"基于包装特征选择算法的埃塞俄比亚东Gojjam道路交通事故决定因素识别","authors":"Mequanent Degu Belete ,&nbsp;Girma Kassa Alitasb ,&nbsp;Samuel Nibretu ,&nbsp;Mezigebu Enawugew Dessie","doi":"10.1016/j.aftran.2024.100018","DOIUrl":null,"url":null,"abstract":"<div><div>One of the biggest global challenges to development and public health is road traffic accidents (RTAs). As a result, this study focuses on analysing road traffic accident determinant factors using the Wrapper Feature Selection Method in case of East Gojjam Zone located in Amhara region, Ethiopia, sub-Saharan. To do this, East Gojjam Road traffic office RTA data classified as simple injury, major injury, and death is gathered. The gathered information is pre-processed before being used using machine learning classification algorithms including Nearest Neighbour (KNN), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Naïve Bayes (NB). Using the wrapper feature selection approach, the most significant factor was identified using the machine-learning algorithm KNN, which obtained the best classification score with an accuracy of 99.5 %. Thus, the type of vehicle, the reason for the accident, the location of the accident, and the licence level were identified as crucial RTA factors. Finally, the variables, Sino track, unfavourable weather, Dolphin, and Debre Elias rated 100 %, 100 %, 85 %, and 82.35 % for fatality in relation to the factors licence driver, cause of accident, type of vehicle, and accident location, respectively.</div></div>","PeriodicalId":100058,"journal":{"name":"African Transport Studies","volume":"3 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road traffic accident determinant factor identification in case of East Gojjam, Ethiopia using wrapper feature selection algorithm\",\"authors\":\"Mequanent Degu Belete ,&nbsp;Girma Kassa Alitasb ,&nbsp;Samuel Nibretu ,&nbsp;Mezigebu Enawugew Dessie\",\"doi\":\"10.1016/j.aftran.2024.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the biggest global challenges to development and public health is road traffic accidents (RTAs). As a result, this study focuses on analysing road traffic accident determinant factors using the Wrapper Feature Selection Method in case of East Gojjam Zone located in Amhara region, Ethiopia, sub-Saharan. To do this, East Gojjam Road traffic office RTA data classified as simple injury, major injury, and death is gathered. The gathered information is pre-processed before being used using machine learning classification algorithms including Nearest Neighbour (KNN), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Naïve Bayes (NB). Using the wrapper feature selection approach, the most significant factor was identified using the machine-learning algorithm KNN, which obtained the best classification score with an accuracy of 99.5 %. Thus, the type of vehicle, the reason for the accident, the location of the accident, and the licence level were identified as crucial RTA factors. Finally, the variables, Sino track, unfavourable weather, Dolphin, and Debre Elias rated 100 %, 100 %, 85 %, and 82.35 % for fatality in relation to the factors licence driver, cause of accident, type of vehicle, and accident location, respectively.</div></div>\",\"PeriodicalId\":100058,\"journal\":{\"name\":\"African Transport Studies\",\"volume\":\"3 \",\"pages\":\"Article 100018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Transport Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950196224000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950196224000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

道路交通事故是发展和公共卫生面临的最大全球挑战之一。因此,本研究的重点是分析道路交通事故的决定因素,使用包装特征选择方法的情况下,东Gojjam区位于阿姆哈拉地区,埃塞俄比亚,撒哈拉以南地区。为此,收集了东Gojjam路交通局RTA分类为简单伤害,重大伤害和死亡的数据。收集到的信息在使用机器学习分类算法之前进行预处理,包括最近邻(KNN),随机森林(RF),决策树(DT),支持向量机(SVM)和Naïve贝叶斯(NB)。使用包装器特征选择方法,使用机器学习算法KNN识别最重要的因素,该算法获得了最佳分类分数,准确率为99.5%。因此,车辆类型、事故原因、事故地点和执照水平被确定为关键的RTA因素。最后,变量,Sino track,不利天气,Dolphin和Debre Elias分别为驾驶员执照,事故原因,车辆类型和事故地点相关因素的死亡率评级为100%,100%,85%和82.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road traffic accident determinant factor identification in case of East Gojjam, Ethiopia using wrapper feature selection algorithm
One of the biggest global challenges to development and public health is road traffic accidents (RTAs). As a result, this study focuses on analysing road traffic accident determinant factors using the Wrapper Feature Selection Method in case of East Gojjam Zone located in Amhara region, Ethiopia, sub-Saharan. To do this, East Gojjam Road traffic office RTA data classified as simple injury, major injury, and death is gathered. The gathered information is pre-processed before being used using machine learning classification algorithms including Nearest Neighbour (KNN), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Naïve Bayes (NB). Using the wrapper feature selection approach, the most significant factor was identified using the machine-learning algorithm KNN, which obtained the best classification score with an accuracy of 99.5 %. Thus, the type of vehicle, the reason for the accident, the location of the accident, and the licence level were identified as crucial RTA factors. Finally, the variables, Sino track, unfavourable weather, Dolphin, and Debre Elias rated 100 %, 100 %, 85 %, and 82.35 % for fatality in relation to the factors licence driver, cause of accident, type of vehicle, and accident location, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信