利用三维建模技术进行城市雕塑设计的智能图案设计

Wei Wan
{"title":"利用三维建模技术进行城市雕塑设计的智能图案设计","authors":"Wei Wan","doi":"10.1016/j.sasc.2024.200176","DOIUrl":null,"url":null,"abstract":"<div><div>3D modeling is actuality hired more and more by cities to improve urban planning and cultural protection. Sculptures in settlements are the main goal of this investigate into a novel 3D-Sculpture Architecture Estimation (3D-SAE) model. This model exploits Generative Adversarial Networks (GANs) to improve images, CNNs to extract features, and LDDNN<img>HGS-ROA, a Novel Lightweight Deep Neural Network mutual with the Hunger Games Search and Remora Optimization Method, to categorize images. The GAN-based image development module reestablishes incapacitated or low-resolution sculpture photos, and the pre-trained CNN usages transfer learning to retrieve thorough features. The LDNN, tuned via HGS and ROA, brands sculpture image classification together effective and precise. This innovative method not only improves the precision of 3D reconstruction, but it also proposals a general tool for art conservationists, urban planners, and the general public in sympathetic and taking in urban sculptures. Participating these cutting-edge tools delivers a solid basis for investigating and interpreting public art, which potentials to improve cultural asset management, art conservation, and urban planning.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200176"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent pattern design using 3D modelling technology for urban sculpture designing\",\"authors\":\"Wei Wan\",\"doi\":\"10.1016/j.sasc.2024.200176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D modeling is actuality hired more and more by cities to improve urban planning and cultural protection. Sculptures in settlements are the main goal of this investigate into a novel 3D-Sculpture Architecture Estimation (3D-SAE) model. This model exploits Generative Adversarial Networks (GANs) to improve images, CNNs to extract features, and LDDNN<img>HGS-ROA, a Novel Lightweight Deep Neural Network mutual with the Hunger Games Search and Remora Optimization Method, to categorize images. The GAN-based image development module reestablishes incapacitated or low-resolution sculpture photos, and the pre-trained CNN usages transfer learning to retrieve thorough features. The LDNN, tuned via HGS and ROA, brands sculpture image classification together effective and precise. This innovative method not only improves the precision of 3D reconstruction, but it also proposals a general tool for art conservationists, urban planners, and the general public in sympathetic and taking in urban sculptures. Participating these cutting-edge tools delivers a solid basis for investigating and interpreting public art, which potentials to improve cultural asset management, art conservation, and urban planning.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"7 \",\"pages\":\"Article 200176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924001054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924001054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,越来越多的城市采用三维建模技术来改进城市规划和文化保护。聚落中的雕塑是本研究的主要目标,研究了一种新的3d雕塑建筑估算(3D-SAE)模型。该模型利用生成对抗网络(Generative Adversarial Networks, GANs)对图像进行改进,利用cnn提取特征,利用LDDNNHGS-ROA对图像进行分类,LDDNNHGS-ROA是一种新型轻量级深度神经网络,与饥饿游戏搜索和remoa优化方法相结合。基于gan的图像开发模块重建无能力或低分辨率的雕塑照片,预训练的CNN用法转移学习以检索彻底的特征。通过HGS和ROA进行调整的LDNN使雕塑图像分类更加有效和精确。这种创新的方法不仅提高了三维重建的精度,也为艺术保护主义者、城市规划者和公众提供了一种同情和欣赏城市雕塑的通用工具。参与这些前沿工具为调查和解释公共艺术提供了坚实的基础,这有可能改善文化资产管理、艺术保护和城市规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent pattern design using 3D modelling technology for urban sculpture designing
3D modeling is actuality hired more and more by cities to improve urban planning and cultural protection. Sculptures in settlements are the main goal of this investigate into a novel 3D-Sculpture Architecture Estimation (3D-SAE) model. This model exploits Generative Adversarial Networks (GANs) to improve images, CNNs to extract features, and LDDNNHGS-ROA, a Novel Lightweight Deep Neural Network mutual with the Hunger Games Search and Remora Optimization Method, to categorize images. The GAN-based image development module reestablishes incapacitated or low-resolution sculpture photos, and the pre-trained CNN usages transfer learning to retrieve thorough features. The LDNN, tuned via HGS and ROA, brands sculpture image classification together effective and precise. This innovative method not only improves the precision of 3D reconstruction, but it also proposals a general tool for art conservationists, urban planners, and the general public in sympathetic and taking in urban sculptures. Participating these cutting-edge tools delivers a solid basis for investigating and interpreting public art, which potentials to improve cultural asset management, art conservation, and urban planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信