半符号幂等逻辑II:贝丝可定义性与演绎插值

IF 0.6 2区 数学 Q2 LOGIC
Wesley Fussner , Nikolaos Galatos
{"title":"半符号幂等逻辑II:贝丝可定义性与演绎插值","authors":"Wesley Fussner ,&nbsp;Nikolaos Galatos","doi":"10.1016/j.apal.2024.103528","DOIUrl":null,"url":null,"abstract":"<div><div>Semiconic idempotent logic <strong>sCI</strong> is a common generalization of intuitionistic logic, semilinear idempotent logic <strong>sLI</strong>, and in particular relevance logic with mingle. We establish the projective Beth definability property and the deductive interpolation property for many extensions of <strong>sCI</strong>, and identify extensions where these properties fail. We achieve these results by studying the (strong) amalgamation property and the epimorphism-surjectivity property for the corresponding algebraic semantics, viz. semiconic idempotent residuated lattices. Our study is made possible by the structural decomposition of conic idempotent models achieved in the prequel, as well as a detailed analysis of the structure of idempotent residuated chains serving as index sets in this decomposition. Here we study the latter on two levels: as certain enriched Galois connections and as enhanced monoidal preorders. Using this, we show that although conic idempotent residuated lattices do not have the amalgamation property, the natural class of stratified and conjunctive conic idempotent residuated lattices has the strong amalgamation property, and thus has surjective epimorphisms. This extends to the variety generated by stratified and conjunctive conic idempotent residuated lattices, and we establish the (strong) amalgamation and epimorphism-surjectivity properties for several important subvarieties. Using the algebraizability of <strong>sCI</strong>, this yields the deductive interpolation property and the projective Beth definability property for the corresponding substructural logics extending <strong>sCI</strong>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 3","pages":"Article 103528"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconic idempotent logic II: Beth definability and deductive interpolation\",\"authors\":\"Wesley Fussner ,&nbsp;Nikolaos Galatos\",\"doi\":\"10.1016/j.apal.2024.103528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semiconic idempotent logic <strong>sCI</strong> is a common generalization of intuitionistic logic, semilinear idempotent logic <strong>sLI</strong>, and in particular relevance logic with mingle. We establish the projective Beth definability property and the deductive interpolation property for many extensions of <strong>sCI</strong>, and identify extensions where these properties fail. We achieve these results by studying the (strong) amalgamation property and the epimorphism-surjectivity property for the corresponding algebraic semantics, viz. semiconic idempotent residuated lattices. Our study is made possible by the structural decomposition of conic idempotent models achieved in the prequel, as well as a detailed analysis of the structure of idempotent residuated chains serving as index sets in this decomposition. Here we study the latter on two levels: as certain enriched Galois connections and as enhanced monoidal preorders. Using this, we show that although conic idempotent residuated lattices do not have the amalgamation property, the natural class of stratified and conjunctive conic idempotent residuated lattices has the strong amalgamation property, and thus has surjective epimorphisms. This extends to the variety generated by stratified and conjunctive conic idempotent residuated lattices, and we establish the (strong) amalgamation and epimorphism-surjectivity properties for several important subvarieties. Using the algebraizability of <strong>sCI</strong>, this yields the deductive interpolation property and the projective Beth definability property for the corresponding substructural logics extending <strong>sCI</strong>.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 3\",\"pages\":\"Article 103528\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224001325\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001325","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

半符号幂等逻辑sCI是对直觉逻辑、半线性幂等逻辑sLI,特别是混合关联逻辑的一般推广。我们建立了sCI的许多扩展的射影Beth可定义性和演绎插值性,并确定了这些性质失效的扩展。我们通过研究相应代数语义,即半符号幂等残格的(强)合并性质和附子满射性质得到了这些结果。我们的研究是通过在前文中实现的二次幂等模型的结构分解,以及在此分解中作为指标集的幂等剩余链的结构的详细分析而得以实现的。在这里,我们从两个层面研究后者:作为某些丰富的伽罗瓦连接和作为增强的一元序。利用这一点,我们证明了虽然二次幂等剩余格不具有合并性质,但自然类的层合二次幂等剩余格具有强合并性质,因而具有满射外胚。这扩展到由层合和合二次幂等剩余格生成的簇,并建立了几个重要子簇的(强)合并和上泛满性。利用sCI的可代数性,给出了相应的扩展sCI的子结构逻辑的演绎插值性质和投影Beth可定义性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiconic idempotent logic II: Beth definability and deductive interpolation
Semiconic idempotent logic sCI is a common generalization of intuitionistic logic, semilinear idempotent logic sLI, and in particular relevance logic with mingle. We establish the projective Beth definability property and the deductive interpolation property for many extensions of sCI, and identify extensions where these properties fail. We achieve these results by studying the (strong) amalgamation property and the epimorphism-surjectivity property for the corresponding algebraic semantics, viz. semiconic idempotent residuated lattices. Our study is made possible by the structural decomposition of conic idempotent models achieved in the prequel, as well as a detailed analysis of the structure of idempotent residuated chains serving as index sets in this decomposition. Here we study the latter on two levels: as certain enriched Galois connections and as enhanced monoidal preorders. Using this, we show that although conic idempotent residuated lattices do not have the amalgamation property, the natural class of stratified and conjunctive conic idempotent residuated lattices has the strong amalgamation property, and thus has surjective epimorphisms. This extends to the variety generated by stratified and conjunctive conic idempotent residuated lattices, and we establish the (strong) amalgamation and epimorphism-surjectivity properties for several important subvarieties. Using the algebraizability of sCI, this yields the deductive interpolation property and the projective Beth definability property for the corresponding substructural logics extending sCI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信