通过双通道途径改善纯水中iCOF/Bi2O3 S-Scheme异质结光催化生成H2O2

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi
{"title":"通过双通道途径改善纯水中iCOF/Bi2O3 S-Scheme异质结光催化生成H2O2","authors":"Yang Xia ,&nbsp;Kangyan Zhang ,&nbsp;Heng Yang ,&nbsp;Lijuan Shi ,&nbsp;Qun Yi","doi":"10.3866/PKU.WHXB202407012","DOIUrl":null,"url":null,"abstract":"<div><div>Solar photocatalysis is a green, economical, and sustainable method for H<sub>2</sub>O<sub>2</sub> synthesis, which has been regarded as the most promising alternative to the traditional anthraquinone oxidation method. However, single-component photocatalyst exhibits moderate activity owing to the limited light-harvesting range, fast charge recombination and inadequate redox capacity. Moreover, the addition of sacrificial agents is required in the reaction system. Herein, we present the development of an S-scheme heterojunction, achieved through photodepositing Bi<sub>2</sub>O<sub>3</sub> nanoparticles (BO) on ionic covalent organic framework nanofiber (iCOF). The optimized photocatalyst iCOF/BO10 shows the highest H<sub>2</sub>O<sub>2</sub> production performance in pure water, achieving an H<sub>2</sub>O<sub>2</sub> yield of 9.76 mmolꞏg<sup>−1</sup>ꞏh<sup>−1</sup> with an apparent quantum yield (AQY) of 5.5% at 420 nm. This photocatalytic performance is approximately 2.2 and 5.6 times as high as that of pristine iCOF and BO, respectively. In-depth characterizations including <em>in situ</em> irradiated XPS, DFT-calculations, active species trapping experiments and <em>in situ</em> DRIFTS, reveal that the obtained sample not only facilitates charge carrier separation and enhances light absorption capability, but also maximizes the redox ability to concurrently achieve indirect 2e<sup>−</sup> ORR and 4e<sup>−</sup> WOR for H<sub>2</sub>O<sub>2</sub> production. Additionally, the generated O<sub>2</sub> from the 4e<sup>−</sup> WOR is capable of accelerating the reaction kinetics for H<sub>2</sub>O<sub>2</sub> formation <em>via</em> the indirect 2e<sup>−</sup> ORR pathway, enabling overall photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis. This work provides a new insight into creating innovative catalysts for achieving high-efficiency photosynthesis of H<sub>2</sub>O<sub>2</sub>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (84KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 11","pages":"Article 2407012"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways\",\"authors\":\"Yang Xia ,&nbsp;Kangyan Zhang ,&nbsp;Heng Yang ,&nbsp;Lijuan Shi ,&nbsp;Qun Yi\",\"doi\":\"10.3866/PKU.WHXB202407012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar photocatalysis is a green, economical, and sustainable method for H<sub>2</sub>O<sub>2</sub> synthesis, which has been regarded as the most promising alternative to the traditional anthraquinone oxidation method. However, single-component photocatalyst exhibits moderate activity owing to the limited light-harvesting range, fast charge recombination and inadequate redox capacity. Moreover, the addition of sacrificial agents is required in the reaction system. Herein, we present the development of an S-scheme heterojunction, achieved through photodepositing Bi<sub>2</sub>O<sub>3</sub> nanoparticles (BO) on ionic covalent organic framework nanofiber (iCOF). The optimized photocatalyst iCOF/BO10 shows the highest H<sub>2</sub>O<sub>2</sub> production performance in pure water, achieving an H<sub>2</sub>O<sub>2</sub> yield of 9.76 mmolꞏg<sup>−1</sup>ꞏh<sup>−1</sup> with an apparent quantum yield (AQY) of 5.5% at 420 nm. This photocatalytic performance is approximately 2.2 and 5.6 times as high as that of pristine iCOF and BO, respectively. In-depth characterizations including <em>in situ</em> irradiated XPS, DFT-calculations, active species trapping experiments and <em>in situ</em> DRIFTS, reveal that the obtained sample not only facilitates charge carrier separation and enhances light absorption capability, but also maximizes the redox ability to concurrently achieve indirect 2e<sup>−</sup> ORR and 4e<sup>−</sup> WOR for H<sub>2</sub>O<sub>2</sub> production. Additionally, the generated O<sub>2</sub> from the 4e<sup>−</sup> WOR is capable of accelerating the reaction kinetics for H<sub>2</sub>O<sub>2</sub> formation <em>via</em> the indirect 2e<sup>−</sup> ORR pathway, enabling overall photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis. This work provides a new insight into creating innovative catalysts for achieving high-efficiency photosynthesis of H<sub>2</sub>O<sub>2</sub>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (84KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"40 11\",\"pages\":\"Article 2407012\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824001784\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001784","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能光催化是一种绿色、经济、可持续的H2O2合成方法,被认为是传统蒽醌氧化法最有前途的替代方法。然而,单组分光催化剂由于光收集范围有限、电荷重组快和氧化还原能力不足而表现出适度的活性。此外,还需要在反应体系中加入牺牲剂。在这里,我们提出了一个s方案异质结的发展,通过光沉积Bi2O3纳米颗粒(BO)在离子共价有机框架纳米纤维(iCOF)上实现。优化后的光催化剂iCOF/BO10在纯水条件下的H2O2产率最高,达到9.76 mmolꞏg−1ꞏh−1,420 nm的表观量子产率为5.5%。这种光催化性能分别是原始iCOF和BO的约2.2倍和5.6倍。深入表征,包括原位辐照XPS, dft计算,活性物种捕获实验和原位漂移,表明所获得的样品不仅有利于电荷载流子分离和增强光吸收能力,而且最大限度地提高了氧化还原能力,同时实现间接2e - ORR和4e - WOR产生H2O2。此外,4e - WOR生成的O2能够加速H2O2通过间接2e - ORR途径生成的反应动力学,从而实现全面的光催化H2O2合成。这项工作为创造创新催化剂实现H2O2的高效光合作用提供了新的见解。下载:下载高清图片(84KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways
Solar photocatalysis is a green, economical, and sustainable method for H2O2 synthesis, which has been regarded as the most promising alternative to the traditional anthraquinone oxidation method. However, single-component photocatalyst exhibits moderate activity owing to the limited light-harvesting range, fast charge recombination and inadequate redox capacity. Moreover, the addition of sacrificial agents is required in the reaction system. Herein, we present the development of an S-scheme heterojunction, achieved through photodepositing Bi2O3 nanoparticles (BO) on ionic covalent organic framework nanofiber (iCOF). The optimized photocatalyst iCOF/BO10 shows the highest H2O2 production performance in pure water, achieving an H2O2 yield of 9.76 mmolꞏg−1ꞏh−1 with an apparent quantum yield (AQY) of 5.5% at 420 nm. This photocatalytic performance is approximately 2.2 and 5.6 times as high as that of pristine iCOF and BO, respectively. In-depth characterizations including in situ irradiated XPS, DFT-calculations, active species trapping experiments and in situ DRIFTS, reveal that the obtained sample not only facilitates charge carrier separation and enhances light absorption capability, but also maximizes the redox ability to concurrently achieve indirect 2e ORR and 4e WOR for H2O2 production. Additionally, the generated O2 from the 4e WOR is capable of accelerating the reaction kinetics for H2O2 formation via the indirect 2e ORR pathway, enabling overall photocatalytic H2O2 synthesis. This work provides a new insight into creating innovative catalysts for achieving high-efficiency photosynthesis of H2O2.
  1. Download: Download high-res image (84KB)
  2. Download: Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信