股息走廊和破产约束

IF 2.2 2区 经济学 Q2 ECONOMICS
Hansjörg Albrecher , Brandon Garcia Flores , Christian Hipp
{"title":"股息走廊和破产约束","authors":"Hansjörg Albrecher ,&nbsp;Brandon Garcia Flores ,&nbsp;Christian Hipp","doi":"10.1016/j.insmatheco.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a new class of dividend payment strategies for which one can easily control an infinite-time-horizon ruin probability constraint for an insurance company. When the risk process evolves as a spectrally negative Lévy process, we investigate analytical properties of these strategies and propose two numerical methods for finding explicit expressions for the optimal parameters. Numerical experiments show that the performance of these strategies is outstanding and, in some cases, even comparable to the overall-unconstrained optimal dividend strategy to maximize expected aggregate discounted dividend payments, despite the ruin constraint.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"121 ","pages":"Pages 1-25"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dividend corridors and a ruin constraint\",\"authors\":\"Hansjörg Albrecher ,&nbsp;Brandon Garcia Flores ,&nbsp;Christian Hipp\",\"doi\":\"10.1016/j.insmatheco.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a new class of dividend payment strategies for which one can easily control an infinite-time-horizon ruin probability constraint for an insurance company. When the risk process evolves as a spectrally negative Lévy process, we investigate analytical properties of these strategies and propose two numerical methods for finding explicit expressions for the optimal parameters. Numerical experiments show that the performance of these strategies is outstanding and, in some cases, even comparable to the overall-unconstrained optimal dividend strategy to maximize expected aggregate discounted dividend payments, despite the ruin constraint.</div></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"121 \",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724001240\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724001240","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类新的股息支付策略,它可以很容易地控制保险公司的无限时间范围破产概率约束。当风险过程演变为谱负的lsamvy过程时,我们研究了这些策略的解析性质,并提出了两种求最优参数显式表达式的数值方法。数值实验表明,这些策略的表现是突出的,在某些情况下,甚至可以与总体无约束最优股息策略相媲美,以最大化预期总贴现股息支付,尽管有破产约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dividend corridors and a ruin constraint
We propose a new class of dividend payment strategies for which one can easily control an infinite-time-horizon ruin probability constraint for an insurance company. When the risk process evolves as a spectrally negative Lévy process, we investigate analytical properties of these strategies and propose two numerical methods for finding explicit expressions for the optimal parameters. Numerical experiments show that the performance of these strategies is outstanding and, in some cases, even comparable to the overall-unconstrained optimal dividend strategy to maximize expected aggregate discounted dividend payments, despite the ruin constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信