注意辅助双分支交互式人脸超分辨网络

Xujie Wan , Siyu Xu , Guangwei Gao
{"title":"注意辅助双分支交互式人脸超分辨网络","authors":"Xujie Wan ,&nbsp;Siyu Xu ,&nbsp;Guangwei Gao","doi":"10.1016/j.cogr.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a deep learning-based Attention-Assisted Dual-Branch Interactive Network (ADBINet) to improve facial super-resolution by addressing key challenges like inadequate feature extraction and poor multi-scale information handling. ADBINet features a multi-scale encoder-decoder architecture that captures and integrates features across scales, enhancing detail and reconstruction quality. The key to our approach is the Transformer and CNN Interaction Module (TCIM), which includes a Dual Attention Collaboration Module (DACM) for improved local and spatial feature extraction. The Channel Attention Guidance Module (CAGM) refines CNN and Transformer fusion, ensuring precise facial detail restoration. Additionally, the Attention Feature Fusion Unit (AFFM) optimizes multi-scale feature integration. Experimental results demonstrate that ADBINet outperforms existing methods in both quantitative and qualitative facial super-resolution metrics.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 77-85"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-assisted dual-branch interactive face super-resolution network\",\"authors\":\"Xujie Wan ,&nbsp;Siyu Xu ,&nbsp;Guangwei Gao\",\"doi\":\"10.1016/j.cogr.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a deep learning-based Attention-Assisted Dual-Branch Interactive Network (ADBINet) to improve facial super-resolution by addressing key challenges like inadequate feature extraction and poor multi-scale information handling. ADBINet features a multi-scale encoder-decoder architecture that captures and integrates features across scales, enhancing detail and reconstruction quality. The key to our approach is the Transformer and CNN Interaction Module (TCIM), which includes a Dual Attention Collaboration Module (DACM) for improved local and spatial feature extraction. The Channel Attention Guidance Module (CAGM) refines CNN and Transformer fusion, ensuring precise facial detail restoration. Additionally, the Attention Feature Fusion Unit (AFFM) optimizes multi-scale feature integration. Experimental results demonstrate that ADBINet outperforms existing methods in both quantitative and qualitative facial super-resolution metrics.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"5 \",\"pages\":\"Pages 77-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241325000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于深度学习的注意力辅助双分支交互网络(ADBINet),通过解决特征提取不足和多尺度信息处理差等关键挑战来提高面部超分辨率。ADBINet具有多尺度编码器-解码器架构,可捕获和集成跨尺度的功能,增强细节和重建质量。我们方法的关键是Transformer和CNN交互模块(TCIM),其中包括用于改进局部和空间特征提取的双注意协作模块(DACM)。通道注意力引导模块(CAGM)改进了CNN和Transformer融合,确保精确的面部细节恢复。此外,注意特征融合单元(AFFM)优化了多尺度特征集成。实验结果表明,ADBINet在定量和定性面部超分辨指标上都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-assisted dual-branch interactive face super-resolution network
We propose a deep learning-based Attention-Assisted Dual-Branch Interactive Network (ADBINet) to improve facial super-resolution by addressing key challenges like inadequate feature extraction and poor multi-scale information handling. ADBINet features a multi-scale encoder-decoder architecture that captures and integrates features across scales, enhancing detail and reconstruction quality. The key to our approach is the Transformer and CNN Interaction Module (TCIM), which includes a Dual Attention Collaboration Module (DACM) for improved local and spatial feature extraction. The Channel Attention Guidance Module (CAGM) refines CNN and Transformer fusion, ensuring precise facial detail restoration. Additionally, the Attention Feature Fusion Unit (AFFM) optimizes multi-scale feature integration. Experimental results demonstrate that ADBINet outperforms existing methods in both quantitative and qualitative facial super-resolution metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信