基于数据驱动的航地混合机器人斜坡地面运动控制方法

Xinhang Xu , Yizhuo Yang , Muqing Cao, Thien-Minh Nguyen, Kun Cao, Lihua Xie
{"title":"基于数据驱动的航地混合机器人斜坡地面运动控制方法","authors":"Xinhang Xu ,&nbsp;Yizhuo Yang ,&nbsp;Muqing Cao,&nbsp;Thien-Minh Nguyen,&nbsp;Kun Cao,&nbsp;Lihua Xie","doi":"10.1016/j.jai.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a data-driven solution for the attitude control of DoubleBee on slopes. DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels. Inspired by the physics modeling of the system, we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects, motor torques and rotation axis shift. The proposed neural network is Lipschitz continuous, has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network. Then, we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds. Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network, and a 40% reduction in tracking error compared to a baseline PID controller.</div></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"3 4","pages":"Pages 219-229"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven control method for ground locomotion on sloped terrain of a hybrid aerial-ground robot\",\"authors\":\"Xinhang Xu ,&nbsp;Yizhuo Yang ,&nbsp;Muqing Cao,&nbsp;Thien-Minh Nguyen,&nbsp;Kun Cao,&nbsp;Lihua Xie\",\"doi\":\"10.1016/j.jai.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we present a data-driven solution for the attitude control of DoubleBee on slopes. DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels. Inspired by the physics modeling of the system, we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects, motor torques and rotation axis shift. The proposed neural network is Lipschitz continuous, has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network. Then, we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds. Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network, and a 40% reduction in tracking error compared to a baseline PID controller.</div></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"3 4\",\"pages\":\"Pages 219-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855424000339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855424000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种数据驱动的双蜂在斜坡上的姿态控制方案。双蜂(DoubleBee)是一种新型的双转子、双主动轮混合航地机器人。受系统物理建模的启发,我们在深度ReLU神经网络中添加了一个通道分离的注意头,以预测来自地面效应、电机扭矩和旋转轴位移的干扰。所提出的神经网络是Lipschitz连续的,具有较少的参数,并且比基线深度ReLU神经网络具有更好的干扰估计性能。然后,我们利用这些预测设计了一个滑模控制器,并建立了它的输入到状态稳定性和误差界。实验表明,与基线ReLU网络相比,所提出的神经网络在训练速度和鲁棒性方面有所改进,与基线PID控制器相比,跟踪误差降低了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven control method for ground locomotion on sloped terrain of a hybrid aerial-ground robot
In this work, we present a data-driven solution for the attitude control of DoubleBee on slopes. DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels. Inspired by the physics modeling of the system, we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects, motor torques and rotation axis shift. The proposed neural network is Lipschitz continuous, has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network. Then, we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds. Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network, and a 40% reduction in tracking error compared to a baseline PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信