R2上粗糙超布朗运动的紧致支撑性质

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Ruhong Jin , Nicolas Perkowski
{"title":"R2上粗糙超布朗运动的紧致支撑性质","authors":"Ruhong Jin ,&nbsp;Nicolas Perkowski","doi":"10.1016/j.spa.2025.104568","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"182 ","pages":"Article 104568"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compact support property of rough super Brownian motion on R2\",\"authors\":\"Ruhong Jin ,&nbsp;Nicolas Perkowski\",\"doi\":\"10.1016/j.spa.2025.104568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"182 \",\"pages\":\"Article 104568\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了Perkowski和Rosati(2021)构建的粗糙超布朗运动的紧支撑特性作为静态随机环境下分支随机游走的尺度极限。与这个测度值过程相对应的半线性方程是连续抛物型安德森模型,这是一个需要重新规范化的奇异SPDE,这阻止了像Englander(2006)那样使用经典PDE参数。但在Moinat(2020)开发的内部估计方法的帮助下,我们能够证明紧凑支撑特性也适用于粗糙的超布朗运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The compact support property of rough super Brownian motion on R2
We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信