{"title":"R2上粗糙超布朗运动的紧致支撑性质","authors":"Ruhong Jin , Nicolas Perkowski","doi":"10.1016/j.spa.2025.104568","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"182 ","pages":"Article 104568"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compact support property of rough super Brownian motion on R2\",\"authors\":\"Ruhong Jin , Nicolas Perkowski\",\"doi\":\"10.1016/j.spa.2025.104568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"182 \",\"pages\":\"Article 104568\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The compact support property of rough super Brownian motion on R2
We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.