一类半光滑核Fredholm积分方程的数值解:两阶段迭代法

IF 1.4 Q2 MATHEMATICS, APPLIED
Mohana Sundaram Muthuvalu , Nor Aida Zuraimi Md Noar , Harry Setiawan , Isman Kurniawan , Shaher Momani
{"title":"一类半光滑核Fredholm积分方程的数值解:两阶段迭代法","authors":"Mohana Sundaram Muthuvalu ,&nbsp;Nor Aida Zuraimi Md Noar ,&nbsp;Harry Setiawan ,&nbsp;Isman Kurniawan ,&nbsp;Shaher Momani","doi":"10.1016/j.rinam.2024.100520","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines two-stage iterative methods, specifically the Geometric Mean (GM) method and its variants, for solving dense linear systems associated with first-kind Fredholm integral equations with semi-smooth kernels. These equations, characterised by ill-posedness and sensitivity to input perturbations, are discretised using a composite closed Newton-Cotes quadrature scheme. The study evaluates the computational performance and accuracy of the standard GM method, also referred to as the Full-Sweep Geometric Mean (FSGM), in comparison with the Half-Sweep Geometric Mean (HSGM) and Quarter-Sweep Geometric Mean (QSGM) methods. Numerical experiments demonstrate significant reductions in computational complexity and execution time while maintaining high solution accuracy. The QSGM method achieves the best performance among the tested methods, highlighting its effectiveness in addressing computational challenges associated with first-kind Fredholm integral equations.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100520"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of first kind Fredholm integral equations with semi-smooth kernel: A two-stage iterative approach\",\"authors\":\"Mohana Sundaram Muthuvalu ,&nbsp;Nor Aida Zuraimi Md Noar ,&nbsp;Harry Setiawan ,&nbsp;Isman Kurniawan ,&nbsp;Shaher Momani\",\"doi\":\"10.1016/j.rinam.2024.100520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines two-stage iterative methods, specifically the Geometric Mean (GM) method and its variants, for solving dense linear systems associated with first-kind Fredholm integral equations with semi-smooth kernels. These equations, characterised by ill-posedness and sensitivity to input perturbations, are discretised using a composite closed Newton-Cotes quadrature scheme. The study evaluates the computational performance and accuracy of the standard GM method, also referred to as the Full-Sweep Geometric Mean (FSGM), in comparison with the Half-Sweep Geometric Mean (HSGM) and Quarter-Sweep Geometric Mean (QSGM) methods. Numerical experiments demonstrate significant reductions in computational complexity and execution time while maintaining high solution accuracy. The QSGM method achieves the best performance among the tested methods, highlighting its effectiveness in addressing computational challenges associated with first-kind Fredholm integral equations.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100520\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了求解具有半光滑核的第一类Fredholm积分方程的密集线性系统的两阶段迭代方法,特别是几何均值(GM)方法及其变体。这些方程具有病态性和对输入扰动的敏感性,使用复合闭牛顿-柯特正交格式进行离散。该研究评估了标准GM方法(也称为全扫描几何平均(FSGM))与半扫描几何平均(HSGM)和四分之一扫描几何平均(QSGM)方法的计算性能和精度。数值实验表明,在保持高解精度的同时,显著降低了计算复杂度和执行时间。QSGM方法在测试方法中取得了最好的性能,突出了其在解决与第一类Fredholm积分方程相关的计算挑战方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of first kind Fredholm integral equations with semi-smooth kernel: A two-stage iterative approach
This paper examines two-stage iterative methods, specifically the Geometric Mean (GM) method and its variants, for solving dense linear systems associated with first-kind Fredholm integral equations with semi-smooth kernels. These equations, characterised by ill-posedness and sensitivity to input perturbations, are discretised using a composite closed Newton-Cotes quadrature scheme. The study evaluates the computational performance and accuracy of the standard GM method, also referred to as the Full-Sweep Geometric Mean (FSGM), in comparison with the Half-Sweep Geometric Mean (HSGM) and Quarter-Sweep Geometric Mean (QSGM) methods. Numerical experiments demonstrate significant reductions in computational complexity and execution time while maintaining high solution accuracy. The QSGM method achieves the best performance among the tested methods, highlighting its effectiveness in addressing computational challenges associated with first-kind Fredholm integral equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信