约束对全被动振荡翼型水轮机水动力性能的影响

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Sierra Mann , Guy Dumas , Peter Oshkai
{"title":"约束对全被动振荡翼型水轮机水动力性能的影响","authors":"Sierra Mann ,&nbsp;Guy Dumas ,&nbsp;Peter Oshkai","doi":"10.1016/j.jfluidstructs.2024.104258","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental study was conducted to assess the effects of flow confinement on the hydrodynamic performance of a fully-passive oscillating-foil turbine at a Reynolds number of 19,000. The experiments were performed using a National Advisory Committee for Aeronautics (NACA) 0015 foil with an aspect ratio of 7.5 in a water tunnel equipped with adjustable lateral walls. The kinematic parameters of the foil oscillations and its energy harvesting performance were measured at eight blockage ratios, ranging from 21 % to 60 %. Quantitative flow imaging was performed using particle image velocimetry (PIV) to observe the timing of the leading-edge vortex (LEV) formation and shedding. Loading on the foil was related to the flow structure by calculating the moments of vorticity with respect to the pitching axis of the foil. The efficiency and the power coefficient increased with increasing confinement and constant upstream velocity. At the highest level of confinement, the proximity of the foil to the walls during parts of the oscillation cycle resulted in a change in the phase lag between the pitching and the heaving components of the foil motion. In turn, this shift in the kinematic parameters led to a sharp decrease in the energy-extraction performance of the turbine.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"133 ","pages":"Article 104258"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of confinement on the hydrodynamic performance of a fully-passive oscillating-foil turbine\",\"authors\":\"Sierra Mann ,&nbsp;Guy Dumas ,&nbsp;Peter Oshkai\",\"doi\":\"10.1016/j.jfluidstructs.2024.104258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An experimental study was conducted to assess the effects of flow confinement on the hydrodynamic performance of a fully-passive oscillating-foil turbine at a Reynolds number of 19,000. The experiments were performed using a National Advisory Committee for Aeronautics (NACA) 0015 foil with an aspect ratio of 7.5 in a water tunnel equipped with adjustable lateral walls. The kinematic parameters of the foil oscillations and its energy harvesting performance were measured at eight blockage ratios, ranging from 21 % to 60 %. Quantitative flow imaging was performed using particle image velocimetry (PIV) to observe the timing of the leading-edge vortex (LEV) formation and shedding. Loading on the foil was related to the flow structure by calculating the moments of vorticity with respect to the pitching axis of the foil. The efficiency and the power coefficient increased with increasing confinement and constant upstream velocity. At the highest level of confinement, the proximity of the foil to the walls during parts of the oscillation cycle resulted in a change in the phase lag between the pitching and the heaving components of the foil motion. In turn, this shift in the kinematic parameters led to a sharp decrease in the energy-extraction performance of the turbine.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"133 \",\"pages\":\"Article 104258\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001920\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001920","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在雷诺数为19000的条件下,进行了流动约束对全被动振荡翼型涡轮水动力性能影响的实验研究。实验采用美国国家航空咨询委员会(NACA) 0015箔,宽高比为7.5,在配备可调节侧壁的水洞中进行。在21% ~ 60%的堵塞率范围内,测量了箔片振荡的运动学参数及其能量收集性能。采用粒子图像测速仪(PIV)进行定量流动成像,观察前缘涡(LEV)形成和脱落的时间。通过计算相对于桨叶俯仰轴的涡量矩,将桨叶上的载荷与流动结构联系起来。随着约束的增大和上游速度的恒定,效率和功率系数增大。在约束的最高水平,接近的箔壁在振荡周期的部分导致在俯仰和起伏的箔运动的组成部分之间的相位滞后的变化。反过来,这种运动参数的变化导致涡轮的能量提取性能急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of confinement on the hydrodynamic performance of a fully-passive oscillating-foil turbine
An experimental study was conducted to assess the effects of flow confinement on the hydrodynamic performance of a fully-passive oscillating-foil turbine at a Reynolds number of 19,000. The experiments were performed using a National Advisory Committee for Aeronautics (NACA) 0015 foil with an aspect ratio of 7.5 in a water tunnel equipped with adjustable lateral walls. The kinematic parameters of the foil oscillations and its energy harvesting performance were measured at eight blockage ratios, ranging from 21 % to 60 %. Quantitative flow imaging was performed using particle image velocimetry (PIV) to observe the timing of the leading-edge vortex (LEV) formation and shedding. Loading on the foil was related to the flow structure by calculating the moments of vorticity with respect to the pitching axis of the foil. The efficiency and the power coefficient increased with increasing confinement and constant upstream velocity. At the highest level of confinement, the proximity of the foil to the walls during parts of the oscillation cycle resulted in a change in the phase lag between the pitching and the heaving components of the foil motion. In turn, this shift in the kinematic parameters led to a sharp decrease in the energy-extraction performance of the turbine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信