在不同数据集上使用机器学习模型对帕金森病患者进行探索性数据分析和分类的Web应用程序

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Daniel Hilário da Silva , Leandro Rodrigues da Silva Souza , Caio Tonus Ribeiro , Simone Hilário da Silva Brasileiro , José Renato Munari Nardo , Adriano Alves Pereira , Adriano de Oliveira Andrade
{"title":"在不同数据集上使用机器学习模型对帕金森病患者进行探索性数据分析和分类的Web应用程序","authors":"Daniel Hilário da Silva ,&nbsp;Leandro Rodrigues da Silva Souza ,&nbsp;Caio Tonus Ribeiro ,&nbsp;Simone Hilário da Silva Brasileiro ,&nbsp;José Renato Munari Nardo ,&nbsp;Adriano Alves Pereira ,&nbsp;Adriano de Oliveira Andrade","doi":"10.1016/j.simpa.2024.100737","DOIUrl":null,"url":null,"abstract":"<div><div>Automated biomedical data analysis tools are crucial in research and clinical practice; however, they are not always accessible to everyone. This paper introduces a web-based system that facilitates exploratory data analysis and machine learning, focusing on identifying audio and video data patterns. This system applies to various biomedical contexts, such as the study of Parkinson’s disease. Developed using Python and the Streamlit framework, it offers an intuitive interface for data analysis, visualization, and automated classification. Its flexibility makes it a valuable resource for researchers and healthcare professionals, enabling meaningful insights and fostering advancements in biomedical research.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100737"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Web Application for exploratory data analysis and classification of Parkinson’s Disease patients using machine learning models on different datasets\",\"authors\":\"Daniel Hilário da Silva ,&nbsp;Leandro Rodrigues da Silva Souza ,&nbsp;Caio Tonus Ribeiro ,&nbsp;Simone Hilário da Silva Brasileiro ,&nbsp;José Renato Munari Nardo ,&nbsp;Adriano Alves Pereira ,&nbsp;Adriano de Oliveira Andrade\",\"doi\":\"10.1016/j.simpa.2024.100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated biomedical data analysis tools are crucial in research and clinical practice; however, they are not always accessible to everyone. This paper introduces a web-based system that facilitates exploratory data analysis and machine learning, focusing on identifying audio and video data patterns. This system applies to various biomedical contexts, such as the study of Parkinson’s disease. Developed using Python and the Streamlit framework, it offers an intuitive interface for data analysis, visualization, and automated classification. Its flexibility makes it a valuable resource for researchers and healthcare professionals, enabling meaningful insights and fostering advancements in biomedical research.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"23 \",\"pages\":\"Article 100737\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824001258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

自动化生物医学数据分析工具在研究和临床实践中至关重要;然而,它们并不总是对每个人都开放。本文介绍了一个基于web的系统,该系统促进了探索性数据分析和机器学习,重点是识别音频和视频数据模式。该系统适用于各种生物医学背景,例如帕金森病的研究。它使用Python和Streamlit框架开发,为数据分析、可视化和自动分类提供了直观的界面。它的灵活性使其成为研究人员和医疗保健专业人员的宝贵资源,能够提供有意义的见解并促进生物医学研究的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Web Application for exploratory data analysis and classification of Parkinson’s Disease patients using machine learning models on different datasets
Automated biomedical data analysis tools are crucial in research and clinical practice; however, they are not always accessible to everyone. This paper introduces a web-based system that facilitates exploratory data analysis and machine learning, focusing on identifying audio and video data patterns. This system applies to various biomedical contexts, such as the study of Parkinson’s disease. Developed using Python and the Streamlit framework, it offers an intuitive interface for data analysis, visualization, and automated classification. Its flexibility makes it a valuable resource for researchers and healthcare professionals, enabling meaningful insights and fostering advancements in biomedical research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信