机器学习与基于规则的方法在精神卫生保健中的电子健康记录文档分类-系统的文献综述

Emil Rijcken , Kalliopi Zervanou , Pablo Mosteiro , Floortje Scheepers , Marco Spruit , Uzay Kaymak
{"title":"机器学习与基于规则的方法在精神卫生保健中的电子健康记录文档分类-系统的文献综述","authors":"Emil Rijcken ,&nbsp;Kalliopi Zervanou ,&nbsp;Pablo Mosteiro ,&nbsp;Floortje Scheepers ,&nbsp;Marco Spruit ,&nbsp;Uzay Kaymak","doi":"10.1016/j.nlp.2025.100129","DOIUrl":null,"url":null,"abstract":"<div><div>Document classification is a widely used task for analyzing mental healthcare texts. This systematic literature review focuses on the document classification of electronic health records in mental healthcare. Over the last decade, there has been a shift from rule-based to machine-learning methods. Despite this shift, no systematic comparison of these two approaches exists for mental healthcare applications. This review examines the evolution, applications, and performance of these methods over time. We find that for most of the last decade, rule-based methods have outperformed machine-learning approaches. However, with the development of more advanced machine-learning techniques, performance has improved. In particular, Transformer-based models enable machine learning approaches to outperform rule-based methods for the first time.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"10 ","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning vs. rule-based methods for document classification of electronic health records within mental health care—A systematic literature review\",\"authors\":\"Emil Rijcken ,&nbsp;Kalliopi Zervanou ,&nbsp;Pablo Mosteiro ,&nbsp;Floortje Scheepers ,&nbsp;Marco Spruit ,&nbsp;Uzay Kaymak\",\"doi\":\"10.1016/j.nlp.2025.100129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Document classification is a widely used task for analyzing mental healthcare texts. This systematic literature review focuses on the document classification of electronic health records in mental healthcare. Over the last decade, there has been a shift from rule-based to machine-learning methods. Despite this shift, no systematic comparison of these two approaches exists for mental healthcare applications. This review examines the evolution, applications, and performance of these methods over time. We find that for most of the last decade, rule-based methods have outperformed machine-learning approaches. However, with the development of more advanced machine-learning techniques, performance has improved. In particular, Transformer-based models enable machine learning approaches to outperform rule-based methods for the first time.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"10 \",\"pages\":\"Article 100129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719125000056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文献分类是一种广泛应用于精神卫生文本分析的任务。本文对精神卫生电子病历的文献分类进行了系统的综述。在过去的十年里,已经从基于规则的方法转向了机器学习方法。尽管这种转变,没有系统的比较这两种方法存在的精神保健应用。本文回顾了这些方法的演变、应用和性能。我们发现,在过去十年的大部分时间里,基于规则的方法表现优于机器学习方法。然而,随着更先进的机器学习技术的发展,性能有所提高。特别是,基于transformer的模型使机器学习方法首次优于基于规则的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning vs. rule-based methods for document classification of electronic health records within mental health care—A systematic literature review
Document classification is a widely used task for analyzing mental healthcare texts. This systematic literature review focuses on the document classification of electronic health records in mental healthcare. Over the last decade, there has been a shift from rule-based to machine-learning methods. Despite this shift, no systematic comparison of these two approaches exists for mental healthcare applications. This review examines the evolution, applications, and performance of these methods over time. We find that for most of the last decade, rule-based methods have outperformed machine-learning approaches. However, with the development of more advanced machine-learning techniques, performance has improved. In particular, Transformer-based models enable machine learning approaches to outperform rule-based methods for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信