区域泛函在下界空间上的收敛性及其应用

IF 1.3 2区 数学 Q1 MATHEMATICS
Alessandro Cucinotta
{"title":"区域泛函在下界空间上的收敛性及其应用","authors":"Alessandro Cucinotta","doi":"10.1016/j.na.2024.113738","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the heat flow provides good approximation properties for the area functional on proper <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> spaces, implying that in this setting the area formula for functions of bounded variation holds and that the area functional coincides with its relaxation. We then obtain partial regularity and uniqueness results for functions whose hypographs are perimeter minimizing. Finally, we consider sequences of <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> spaces and we show that, thanks to the previously obtained properties, Sobolev minimizers of the area functional in a limit space can be approximated with minimizers along the converging sequence of spaces. Using this last result, we obtain applications on Ricci-limit spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113738"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of the area functional on spaces with lower Ricci bounds and applications\",\"authors\":\"Alessandro Cucinotta\",\"doi\":\"10.1016/j.na.2024.113738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the heat flow provides good approximation properties for the area functional on proper <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> spaces, implying that in this setting the area formula for functions of bounded variation holds and that the area functional coincides with its relaxation. We then obtain partial regularity and uniqueness results for functions whose hypographs are perimeter minimizing. Finally, we consider sequences of <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> spaces and we show that, thanks to the previously obtained properties, Sobolev minimizers of the area functional in a limit space can be approximated with minimizers along the converging sequence of spaces. Using this last result, we obtain applications on Ricci-limit spaces.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"254 \",\"pages\":\"Article 113738\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002578\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了热流在适当的RCD(K,∞)空间上为面积泛函提供了良好的近似性质,这意味着在这种情况下,有界变分函数的面积公式成立,并且面积泛函与其松弛一致。然后,我们得到了其形图为周长最小化的函数的部分正则性和唯一性结果。最后,我们考虑RCD(K,N)空间的序列,并证明,由于先前得到的性质,极限空间中泛函面积的Sobolev极小值可以用沿着空间收敛序列的极小值来逼近。利用最后的结果,我们得到了在ricci极限空间上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the area functional on spaces with lower Ricci bounds and applications
We show that the heat flow provides good approximation properties for the area functional on proper RCD(K,) spaces, implying that in this setting the area formula for functions of bounded variation holds and that the area functional coincides with its relaxation. We then obtain partial regularity and uniqueness results for functions whose hypographs are perimeter minimizing. Finally, we consider sequences of RCD(K,N) spaces and we show that, thanks to the previously obtained properties, Sobolev minimizers of the area functional in a limit space can be approximated with minimizers along the converging sequence of spaces. Using this last result, we obtain applications on Ricci-limit spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信