基于期望分位数改进的不确定条件下多目标反应优化

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiyizhe Zhang , Daria Semochkina , Naoto Sugisawa , David C. Woods , Alexei A. Lapkin
{"title":"基于期望分位数改进的不确定条件下多目标反应优化","authors":"Jiyizhe Zhang ,&nbsp;Daria Semochkina ,&nbsp;Naoto Sugisawa ,&nbsp;David C. Woods ,&nbsp;Alexei A. Lapkin","doi":"10.1016/j.compchemeng.2024.108983","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-objective Bayesian optimization (MOBO) has shown to be a promising tool for reaction development. However, noise is usually inevitable in experimental and chemical processes, and finding reliable solutions is challenging when the noise is unknown or significant. In this study, we focus on finding a set of optimal reaction conditions using multi-objective Euclidian expected quantile improvement (MO-E-EQI) under noisy settings. First, the performance of MO-E-EQI is evaluated by comparing with some recent MOBO algorithms <em>in silico</em> with linear and log-linear heteroscedastic noise structures and different magnitudes. It is noticed that high noise can degrade the performance of MOBO algorithms. MO-E-EQI shows robust performance in terms of hypervolume-based metric, coverage metric and number of solutions on the Pareto front. Finally, MO-E-EQI is implemented in a real case to optimize an esterification reaction to achieve the maximum space-time-yield and the minimal E-factor. The algorithm identifies a clear trade-off between the two objectives.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108983"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective reaction optimization under uncertainties using expected quantile improvement\",\"authors\":\"Jiyizhe Zhang ,&nbsp;Daria Semochkina ,&nbsp;Naoto Sugisawa ,&nbsp;David C. Woods ,&nbsp;Alexei A. Lapkin\",\"doi\":\"10.1016/j.compchemeng.2024.108983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-objective Bayesian optimization (MOBO) has shown to be a promising tool for reaction development. However, noise is usually inevitable in experimental and chemical processes, and finding reliable solutions is challenging when the noise is unknown or significant. In this study, we focus on finding a set of optimal reaction conditions using multi-objective Euclidian expected quantile improvement (MO-E-EQI) under noisy settings. First, the performance of MO-E-EQI is evaluated by comparing with some recent MOBO algorithms <em>in silico</em> with linear and log-linear heteroscedastic noise structures and different magnitudes. It is noticed that high noise can degrade the performance of MOBO algorithms. MO-E-EQI shows robust performance in terms of hypervolume-based metric, coverage metric and number of solutions on the Pareto front. Finally, MO-E-EQI is implemented in a real case to optimize an esterification reaction to achieve the maximum space-time-yield and the minimal E-factor. The algorithm identifies a clear trade-off between the two objectives.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108983\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424004010\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004010","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多目标贝叶斯优化(MOBO)已被证明是一种很有前途的反应开发工具。然而,在实验和化学过程中,噪声通常是不可避免的,当噪声未知或显著时,寻找可靠的解决方案是具有挑战性的。在这项研究中,我们的重点是寻找一组最优的反应条件,使用多目标欧几里得期望分位数改进(MO-E-EQI)在噪声设置下。首先,将MO-E-EQI算法的性能与一些具有线性和对数线性异方差噪声结构和不同量级的计算机MOBO算法进行比较。注意到高噪声会降低MOBO算法的性能。MO-E-EQI在基于超容量的度量、覆盖度量和Pareto前端的解决方案数量方面表现出强大的性能。最后,应用MO-E-EQI对酯化反应进行优化,以达到最大的时空产率和最小的e因子。该算法明确了这两个目标之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective reaction optimization under uncertainties using expected quantile improvement
Multi-objective Bayesian optimization (MOBO) has shown to be a promising tool for reaction development. However, noise is usually inevitable in experimental and chemical processes, and finding reliable solutions is challenging when the noise is unknown or significant. In this study, we focus on finding a set of optimal reaction conditions using multi-objective Euclidian expected quantile improvement (MO-E-EQI) under noisy settings. First, the performance of MO-E-EQI is evaluated by comparing with some recent MOBO algorithms in silico with linear and log-linear heteroscedastic noise structures and different magnitudes. It is noticed that high noise can degrade the performance of MOBO algorithms. MO-E-EQI shows robust performance in terms of hypervolume-based metric, coverage metric and number of solutions on the Pareto front. Finally, MO-E-EQI is implemented in a real case to optimize an esterification reaction to achieve the maximum space-time-yield and the minimal E-factor. The algorithm identifies a clear trade-off between the two objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信